Ratio Test
Given the series ∑∞n=1an
- If limn→∞|an+1an|=L<1, then the series is absolutely convergent.
- If limn→∞|an+1an|=L>1 or limn→∞|an+1an|=∞, then the series is divergent.
- If limn→∞|an+1an|=L=1, then the series might converge or diverge. No conclusion can be made, and use another test.
Example
Determine if the series ∑∞n=1n3n4n−1 converges absolutely.
Solution
Let an=n3n4n−1. Then, an+1=(n+1)3n+14(n+1)−1=(n+1)3n+14n.
limn→∞|an+1an|=limn→∞|(n+1)3n+14nn3n4n−1|=limn→∞|((n+1)3n+14n)(4n−1n3n)|=limn→∞|3(n+1)4n|=limn→∞|3(1+1/n)4|=34<1
By the Ratio Test, ∑∞n=1n3n4n−1 is absolutely convergent.
Root Test
Given the series ∑∞n=1an.
- If limn→∞n√|an|=L<1, then the series is absolutely convergent.
- If limn→∞n√|an|=L>1 or limn→∞n√|an|=∞, then the series is divergent.
- If limn→∞n√|an|=L=1, then the series might converge or diverge. No conclusion can be made, and use another test (do not use the Ratio Test because L will be 1 again.)
Example
Determine if the series ∑∞n=1nn31+3n absolutely converges.
Solution
Let an=nn31+3n.
limn→∞n√|an|=limn→∞n√|nn31+3n|=limn→∞(nn31+3n)1n=limn→∞n31/n+3=∞
By the Root Test, ∑∞n=1nn31+3n diverges.