Ratio Test & Root Test

PDF Download

Ratio Test

Given the series n=1an

  1. If limn|an+1an|=L<1, then the series is absolutely convergent.
  2. If limn|an+1an|=L>1 or limn|an+1an|=, then the series is divergent.
  3. If limn|an+1an|=L=1, then the series might converge or diverge. No conclusion can be made, and use another test.

Example

Determine if the series n=1n3n4n1 converges absolutely.

Solution

Let an=n3n4n1. Then, an+1=(n+1)3n+14(n+1)1=(n+1)3n+14n.

limn|an+1an|=limn|(n+1)3n+14nn3n4n1|=limn|((n+1)3n+14n)(4n1n3n)|=limn|3(n+1)4n|=limn|3(1+1/n)4|=34<1

By the Ratio Test, n=1n3n4n1 is absolutely convergent.

Root Test

Given the series n=1an.

  1. If limnn|an|=L<1, then the series is absolutely convergent.
  2. If limnn|an|=L>1 or limnn|an|=, then the series is divergent.
  3. If limnn|an|=L=1, then the series might converge or diverge. No conclusion can be made, and use another test (do not use the Ratio Test because L will be 1 again.)

Example

Determine if the series n=1nn31+3n absolutely converges.

Solution

Let an=nn31+3n.

limnn|an|=limnn|nn31+3n|=limn(nn31+3n)1n=limnn31/n+3=

By the Root Test, n=1nn31+3n diverges.