Implicit Differentiation

PDF Download

Explicit equation (i.e., \(y\) given explicitly as a function of \(x\)):

$$y=e^{3x}-x^2+\ln x$$

Explicit equation (i.e., \(y\) given explicitly as a function of \(x\), or \(x\) given explicitly as a function of \(y\)):

$$x^2y+y^2=e^{xy}+\sin(x+y)$$

For functions given IMPLICITLY:

Step 1. Assuming that  \(y\)  is a function of \(x\), i.e., \(y = f (x)\), take the usual derivative with respect to \(x\), keeping in mind to use the chain rule when differentiating terms involving \(y\) (which, of course, involves multiplying by \(y^{\prime}\text{or }\frac{dy}{dx}).\)

Step 2. Solve for \(y'\), if possible, or requested.

Example

Differentiate the following equations.

$$\begin{array}{cc}(\text{a})&&2x^3-3xy^2+y^4=-20\\\\\text{(b)}&&xy=e^{-xy}\end{array}$$

Solution 

(a) Step 1.

$$\begin{aligned}
2x^{3}-3xy^{2}+y^{4}& =-20  \\
6x^{2}-3[y^{2}+2yy^{\prime}x]+4y^{3}y^{\prime}& =0  \\
6x^{2}-3y^{2}-6yy^{\prime}x+4y^{3}y& =0 
\end{aligned}$$

Step 2.

$$\begin{aligned}
-6xyy+4y^{3}y^{\prime}& =-6x^{2}+3y^{2}  \\
y'(-6xy+4y^{3})& =-6x^{2}+3y^{2},  \\
\mathcal{y}^{\prime}& =\frac{-6x^{2}+3y^{2}}{-6xy+4y^{3}} 
\end{aligned}$$

(b) Step 1.

$$\begin{aligned}
\boldsymbol{x}y& =e^{-xy}  \\
y+xy& =e^{-xy}(-y-xy^{\prime})  \\
&=-e^{-xy}y-e^{-xy}xy^{\prime}
\end{aligned}$$

Step 2.

$$\begin{aligned}
xy^{\prime}+e^{-xy}xy& =-e^{-xy}y-y  \\
y^{\prime}(x+e^{-xy}x)& =-y(e^{-xy}+1)\quad,  \\
\mathcal{y}^{\prime}& =\frac{-y(e^{-xy}+1)}{x(e^{-xy}+1)}=\frac{-y}{x}  \\
\mathrm{since~}e^{-xy}+1& \neq\mathbf{0}. 
\end{aligned}$$