Logical Equivalence and Negating Logical Statements

PDF Download

Two logical statements are equivalent if the values in their truth tables are all equal.

Example

Show \(\neg(P\Rightarrow Q)\) is equivalent to \(P\wedge\neg\mathcal{Q}.\)

Solution

To make the truth table for logical statement(s) we break them down into their constituent parts. For example \(\neg(P\Rightarrow Q)\) is made up from \({P}\) and \({Q}\) which are put together as \(P\Rightarrow Q\) and finally negated into \(\neg(P\Rightarrow Q)\).

In \(P\wedge\neg\mathcal{Q}\) we still have \({P}\) and \({Q}\), but we also need \(\neg\mathcal{Q}\) which together with \({P}\) makes \(P\wedge\neg\mathcal{Q}.\)

First we fill in the columns for the statements \({P}\) and \({Q}\), making sure we have every combination of true and false (i.e., every combination of their values).

\(\begin{array}{|c|c|c|c|c|c|c|}\hline P&Q&\neg Q&P\wedge\neg Q&P\Rightarrow Q&\neg(P\Rightarrow Q)\\\hline\text{т}&\text{т}&&&&\\\hline\text{т}&\text{т}&&&&\\\hline\text{т}&\text{т}&&&&\\\hline\text{F}&\text{т}&&&&\\\hline\text{F}&\text{F}&&&&\\\hline\end{array}\)

Then we fill in the rest of the columns using the tables for the other connectives (not, and, or, …).

\(\begin{array}{|c|c|c|c|c|c|c|c|}\hline P&Q&\neg Q&P\wedge\neg Q&P\Rightarrow Q&\neg(P\Rightarrow Q)\\\hline\text{т}&\text{т}&\text{F}&\text{F}&\text{т}&\text{F}\\\hline\text{т}&\text{F}&\text{т}&\text{т}&\text{F}&\text{т}\\\hline\text{F}&\text{т}&\text{F}&\text{F}&\text{т}&\text{F}\\\hline\text{F}&\text{F}&\text{т}&\text{F}&\text{т}&\text{F}\\\hline\end{array}\)

Since the columns for  \(\neg(P\Rightarrow Q)\) and \(P\wedge\neg\mathcal{Q}\) are the same, the statements are logically equivalent.

Negating Statements

We negate a statement by using the following formulas/rules:

\(\begin{aligned}&1.\quad\neg\left(P\wedge Q\right)\Leftrightarrow\neg P\vee\neg Q\\&2.\quad\neg\left(P\vee Q\right)\Leftrightarrow\neg P\wedge\neg Q\\&3.\quad\neg\left(P\Rightarrow Q\right)\Leftrightarrow P\wedge\neg Q\\&4.\quad\neg\left(\left(\forall x\right)R(x)\right)\Leftrightarrow(\exists x)\neg R(x)\\&5.\quad\neg\left(\left(\exists x\right)R(x)\right)\Leftrightarrow(\forall x)\neg R(x)\end{aligned}\)

Note that in negation, we switch and \(\text{(人)}\) and or \(\left(\wedge\right)\) and for every \(\mathrm{(V)}\) and there exists \(\text{(日)}\). 

Example 

Show the negation of 

\(\left(\forall x\in F\right)\left[x\neq0\Rightarrow\left(\exists y\in F\right)\left(y\neq0\wedge x\cdot y=1\right)\right]\)

and simplify so that the formula does not include the negation symbol \(\text{¬}\).

Solution

\(\begin{gathered}
\text{} \neg\left\{\left(\forall x\in F\right)\left[x\neq0\Rightarrow\left(\left(\exists y\in F\right)\left(y\neq0\wedge x\cdot y=1\right)\right)\right]\right\} \\
\left.\left(\exists x\in F\right)\neg\right|x\neq0\Rightarrow\left(\left(\exists y\in F\right)\left(y\neq0\wedge x\cdot y=1\right)\right)] \\
\left.\left.\left(\exists x\in F\right)\right|x\neq0\wedge\neg\left(\left(\exists y\in F\right)\left(y\neq0\wedge x\cdot y=1\right)\right)\right] \\
\left.\left(\exists x\in F\right)\right|x\neq0\wedge\left(\left(\forall y\in F\right)\neg\left(y\neq0\wedge x\cdot y=1\right)\right)] \\
\left(\exists x\in F\right)\left[x\neq0\wedge\left(\left(\forall y\in F\right)\left(y=0\vee x\cdot y\neq1\right)\right)\right] 
\end{gathered}\)

Example

Compute the negative of \(\left(\exists x\in\mathbb{R}\right)\left(\left(\left(\forall y\in\mathbb{R}\right)\left(y^2\neq x\right)\right)\lor\left(x\geq0\right)\right)\) without using the \(\text{¬}\) symbol .

Solution

\(\begin{aligned}
&\lnot\left\{\left(\exists x\in\mathbb{R}\right)\left(\left(\left(\forall y\in\mathbb{R}\right)\left(y^2\neq x\right)\right)\lor\left(x\geq0\right)\right)\right\} \\
&\left(\forall x\in\mathbb{R}\right)\lnot\left(\left(\left(\forall y\in\mathbb{R}\right)\left(y^2\neq x\right)\right)\lor\left(x\geq0\right)\right)\\
&\left(\forall x\in\mathbb{R}\right)\left(\neg\left(\left(\forall y\in\mathbb{R}\right)\left(y^2\neq x\right)\right)\wedge\neg\left(x\geq0\right)\right) \\
&\left(\forall x\in\mathbb{R}\right)\left(\left(\left(\exists y\in\mathbb{R}\right)\neg\left(y^2\neq x\right)\right)\wedge\left(x<0\right)\right) \\
&\left(\forall x\in\mathbb{R}\right)\left(\left(\left(\exists y\in\mathbb{R}\right)\left(y^2=x\right)\right)\wedge\left(x<0\right)\right)
\end{aligned}\)