Integration by Trigonometric Substitution

PDF Download

Trignomometric Substitution

Expression

a2x2

 

Substitution Needed

x=asinθdx=acosθdθ

Identity Needed

1sin2θ=cos2θ

Right Angle Triangle

sinθ=opphyp=xa

image

a2+x2

x=atanθdx=asec2θdθ

1+tan2θ=sec2θ

tanθ=oppadj=xa

triangle

x2a2

x=asecθdx=asecθtanθdθ

sec2θ1=tan2θ

secθ=hypadj=xa

triangle

Example. Compute x29xdx. 

Solution. Let x=3secθ. Then, dx=3secθtanθdθ

The trigonometric identity needed is sec2θ1=tan2θ.

The right angle triangle needed is:

 

triangle

 

x29xdx=(3secθ)293secθ3secθtanθdθ=9sec2θ9tanθdθ=9tan2θtanθdθ=3tanθtanθdθ=3tan2θdθ=3(sec2θ1)dθ=3(tanθθ)+C=3(x293arcsec(x/3))+C

Note that θ=arcsec(x/3) (from the substitution equation).