Trignomometric Substitution
Expression
√a2−x2
Substitution Needed
x=asinθdx=acosθdθ
Identity Needed
1−sin2θ=cos2θ
Right Angle Triangle
sinθ=opphyp=xa

√a2+x2
x=atanθdx=asec2θdθ
1+tan2θ=sec2θ
tanθ=oppadj=xa

√x2−a2
x=asecθdx=asecθtanθdθ
sec2θ−1=tan2θ
secθ=hypadj=xa

Example. Compute ∫√x2−9xdx.
Solution. Let x=3secθ. Then, dx=3secθtanθdθ
The trigonometric identity needed is sec2θ−1=tan2θ.
The right angle triangle needed is:

∫√x2−9xdx=∫√(3secθ)2−93secθ3secθtanθdθ=∫√9sec2θ−9tanθdθ=∫√9tan2θtanθdθ=∫3tanθtanθdθ=3∫tan2θdθ=3∫(sec2θ−1)dθ=3(tanθ−θ)+C=3(√x2−93−arcsec(x/3))+C
Note that θ=arcsec(x/3) (from the substitution equation).