Substitution Rule
If u=g(x) is a differentiable function whose range is an interval I and if f is continuous on I, then ∫f(g(x))g′(x)dx=∫f(u)du.
Note that the assumptions guarantee that the integrands on both sides of this equality are continuous functions.
TIP: Substitute terms that are:
- raised to a high power: ∫(3x2+2x)(x3+x2)3dx let u=x3+x2
- under a root: ∫4x35√x4−1dx let u=x4−1
- in the power of the exponential ∫ex3+x(3x2+1)dx let u=x3+x
- within the logarithmic function: ∫−3(4x3−x2)ln(−3x4+x3)dx let t=−3x4+x3
Example: Integrate ∫3(8z+1)e4z2+zdz.
Solution: Let u=4z2+z. Then, du=(8z+1)dz.
∫3(8z+1)e4z2+zdz=∫3eudu=3∫eudu=3eu+C=3e4z2+z+C
Example: Integrate ∫x√1−4x2dx.
Solution: Let u=1−4x2. Then, du=−8xdx, but rewrite it as −18du=xdx.
∫x√1−4x2dx=∫x(1−4x2)−12dx=−18∫u−12du=−14u12+C=−14(1−4x2)12+C
Definite Integral by Substitution
If g′(x) is continuous on [a,b] and if f is continuous on the range of u=g(x), then
∫baf(g(x))g′(x)dx=∫g(b)g(a)f(u)du=F(u)|g(b)g(a)=F(g(b))−F(g(a))
where F is an antiderivative of f. (Note that an alternative solution is provided to the example below for illustration of this formula.)
Computing a Definite Integral by Substitution
Step 1: Solve the integral as an indefinite integral.
Step 2: Use the result of the indefinite integral, and evaluate it over the interval of integration.
Alternatively, change the limits of integration when converting the integral to the new variable u (see example below).
Example: Integrate ∫0−12x(2+x2)3dx.
Solution: Step 1
Let u=2+x2. Then du=2xdx.
∫2x(2+x2)3dx=∫2x(2+x2)−3dx=∫u−3du=−12u−2+C=−12(2+x2)−2+C
Step 2
∫0−12x(2+x2)3dx=−12(2+x2)−2|0−1=[−12(2+(0)2)−2]−[−12(2+(−1)2)−2]=12[−(2)−2+(3)−2]=12[−14+19]=−572
Alternative solution
Let u=2+x2. Then, du=2xdx.
∫0−12x(2+x2)3dx=∫0−12x(2+x2)−3dx=∫23u−3du=−12u−2|23=−12[14−19]=−572