Integration by Substitution

PDF Download

Substitution Rule

If u=g(x) is a differentiable function whose range is an interval I and if f is continuous on I, then f(g(x))g(x)dx=f(u)du.

Note that the assumptions guarantee that the integrands on both sides of this equality are continuous functions.

TIP: Substitute terms that are:

  • raised to a high power: (3x2+2x)(x3+x2)3dx  let u=x3+x2
  • under a root: 4x35x41dx let u=x41
  • in the power of the exponential ex3+x(3x2+1)dx let u=x3+x
  • within the logarithmic function: 3(4x3x2)ln(3x4+x3)dx let t=3x4+x3

Example: Integrate 3(8z+1)e4z2+zdz.

Solution: Let u=4z2+z. Then, du=(8z+1)dz.

3(8z+1)e4z2+zdz=3eudu=3eudu=3eu+C=3e4z2+z+C

Example: Integrate x14x2dx.

Solution: Let u=14x2. Then, du=8xdx, but rewrite it as 18du=xdx.

x14x2dx=x(14x2)12dx=18u12du=14u12+C=14(14x2)12+C

Definite Integral by Substitution

If g(x) is continuous on [a,b] and if f is continuous on the range of u=g(x), then

baf(g(x))g(x)dx=g(b)g(a)f(u)du=F(u)|g(b)g(a)=F(g(b))F(g(a))

where F is an antiderivative of f.  (Note that an alternative solution is provided to the example below for illustration of this formula.)

Computing a Definite Integral by Substitution

Step 1: Solve the integral as an indefinite integral. 

Step 2: Use the result of the indefinite integral, and evaluate it over the interval of integration. 

Alternatively, change the limits of integration when converting the integral to the new variable u (see example below).

Example: Integrate 012x(2+x2)3dx.

Solution: Step 1

Let u=2+x2. Then du=2xdx.

2x(2+x2)3dx=2x(2+x2)3dx=u3du=12u2+C=12(2+x2)2+C

Step 2

012x(2+x2)3dx=12(2+x2)2|01=[12(2+(0)2)2][12(2+(1)2)2]=12[(2)2+(3)2]=12[14+19]=572

Alternative solution

Let u=2+x2. Then, du=2xdx.

012x(2+x2)3dx=012x(2+x2)3dx=23u3du=12u2|23=12[1419]=572