Integrals Over Curves

PDF Download

Assume that C is a (smooth) curve in a plane or space that is parameterized by the vector function \(\overline{l}\left(t\right)=\left\langle x(t),y(t),z(t)\right\rangle,\) where \(t\in[a,b].\)(Note that if is a curve in a plane, then we drop the third component z(t).)

Remember that line integrals and path integrals are equivalent.

What does \(\underset{\mathrm{c}}{\operatorname*{\int}}dl\) mean?

The integral \(\underset{\mathrm{c}}{\operatorname*{\int}}dl\) is a line integral of a scalar function f(x,y)=1 or f(x, y, z)=1, and represents the length of C.

To compute \(\underset{\mathrm{c}}{\operatorname*{\int}}dl\) 

  • In R2 (a plane),

\(\int\limits_{\mathrm{C}}dl=\int\limits_{a}^{b}\sqrt{\left(x'\left(t\right)\right)^2+\left(y'\left(t\right)\right)^2}dt=\int\limits_{a}^{b}\left|\overline{l'}\left(t\right)\right|dt.\)

 

  • In R3 (space),

\(\int\limits_{\mathrm{C}}dl=\int\limits_{a}^{b}\sqrt{\left(x'\left(t\right)\right)^2+\left(y'\left(t\right)\right)^2+\left(z'\left(t\right)\right)^2} dt=\int\limits_{a}^{b}\left|\overline{l'}\left(t\right)\right|dt.\)

What does \(\underset{\mathrm{c}}{\operatorname*{\int}}d\overline{l}\) mean?

The line integral \(\underset{\mathrm{c}}{\operatorname*{\int}}d\overline{l}\) is the displacement vector of the curve / path \(\overline{l}\left(t\right).\) By definition

\(\int\limits_{\mathbb{C}}d\overline{l}=\int\limits_{a}^{b}\overline{l'}(t)dt,\)

where \(\overline{l^{\prime}}(t)\) is the tangent vector to the trajectory of a particle (or object) represented as a vector function \(\overline{l}\left(t\right).\)

The total distance along the curve \(\overline{l}\left(t\right)\) is calculated by \(\underset{\mathrm{C}}{\operatorname*{\int}}\left|\overline{l^{\prime}}(t)\right|dt.\)

Example. If \(\overline{l}\left(t\right)=\left\langle\cos t,\sin t\right\rangle \) for \(0\leq t\leq\pi,\) find the displacement of \(\overline{l}\left(t\right)\) and the total distance along the curve.

Solution. For the displacement of \(\overline{l}\left(t\right)\), we find that \(\overline{l^{\prime}}(t)=\langle-\sin t,\cos t\rangle \) and calculate

\(\int_0^\pi d\overline{l}=\int_0^\pi\overline{l^{\prime}}(t)dt=\int_0^\pi\left\langle-\sin t,\cos t\right\rangle dt=\left\langle\cos t\mid_0^\pi,\sin t\mid_0^\pi\right\rangle=\left\langle-2,0\right\rangle.\)

For the total distance along the curve, we calculate

\(\int_0^\pi|\overline{l^{\prime}}(t)|dt=\int_0^\pi\left|\langle-\sin t,\cos t\rangle\right|dt=\int_0^\pi\sqrt{\left(-\sin t\right)^2+\left(\cos t\right)^2}dt=\int_0^\pi1dt=\pi.\)

vector

 

What does \(\underset{\mathrm{c}}{\operatorname*{\int}}fds\) mean?

The integral \(\underset{\mathrm{c}}{\operatorname*{\int}}fds\) is the line integral of a continuous real-valued function f(x, y) or f(x, y, z), i.e., it represents the area of the region under the surface z= f(x, y) along the curve \(\overline{l}\left(t\right).\) We calculate as follows:

\(\underset{\mathrm{C}}{\operatorname*{\int}}f ds=\int_{a}^{b}f\left(\overline{l}\left(t\right)\right)\left|\overline{l}\left(t\right)\right|dt.\)

 

What does \(\int dA\) mean where A is a region in the plane.

The integral \(\int dA\) is equal to the area of A.

What does \(\iint_R f(x, y)\, dA\) mean?

Suppose that f(x, y) is continuous on some region in the xy-plane. The integral \(\iint_R f(x, y)\, dA\) represents the volume over the region under the surface which is defined by z= f(x, y). Note that \(\iint_R f(x, y)\, dA\) is evaluated as an iterated integral and thus dA=dxdy or dA=dydx.

What does \(\int\bar{F}\cdot d\bar{A}\) mean?

To calculate \(\int\bar{F}\cdot d\bar{A}\), we write the integral as

\(\int\overline{F}\cdot d\overline{A}=\int\overline{F}\cdot\overline{n}dA,\)

where \(\bar{n}\) is the unit normal of the planar region A and dA is a small patch of the region. Note that \(d\bar{A}=\bar{n}dA.\)

If \(\bar{F}\) is a constant vector field, then we can evaluate the integral as follows.

\(\begin{aligned}
&\int\bar{F}\cdot d\bar{A} \\
&=\int\bar{F}\cdot\overline{n}dA,\quad d\overline{A}=\overline{n}dA \\
&=\int\left|\overline{F}\right|\left|\overline{n}\right|\cos\left(\theta\right)dA,\quad\text{Theorem }\overline{A}\cdot\overline{B}=AB\cos\left(\theta\right) \\
&=\int(F)(1)\cos(\theta)dA \\
&=F\cos(\theta)\int dA,\quad F\cos(\theta)\text{is a constant and}\int dA\text{ is the area of }A \\
&=FA\cos(\theta)
\end{aligned}\)

What does \(\int_Bf\left(x,y,z\right)dV\) mean where B is a region in space?

In general, there is no interpretation. 

If f(x, y, z)= 1, then this triple integral represents the volume of B

If f(x, y, z) represents density, then this triple integral gives the total mass of B

This triple integral is computed as an iterated integral where dV= dxdydz (or any other order which is convenient to compute).

Line Integrals of Vector Fields (Theory)

Suppose that \(\overline{F}=P\overline{i}+Q\overline{j}+R\overline{k}\) is a continuous force field on R3 (i.e., in 3-dimensions; thus P, Q, and R are functions of x, y, and z). Note that a force field in R2 (i.e. in 2- dimesions) can be thought of as a special case where R=0 and P and Q depend only on x and y.

Now, a formula can be derived for a force \(\bar{F}\) acting upon a particle that moves along the curve C (from some initial point to some terminal point).

The force \(\bar{F}\) in moving the particle from Pi-1 to Pi is approximately

\(\bar{F}\left(x_i^*,y_i^*,z_i^*\right)\cdot\left[\Delta s_i\bar{T}\left(x_i^*,y_i^*,z_i^*\right)\right]=\left[\bar{F}\left(x_i^*,y_i^*,z_i^*\right)\cdot\bar{T}\left(x_i^*,y_i^*,z_i^*\right)\right]\Delta s_i\)

where \(\bar{T}\)(xi*, yi*, zi*) is the unit tangent vector at a point (xi*, yi*, zi*) between Pi-1 and Pi on C (details of this will be provided in a vector calculus course; we do not have all concepts available, such as Mean Value Theorem, for a precise derivation). Here, the actual displacement \(\Delta s_{i}\) along C is approximated by \(\Delta s_{i}\)\(\bar{T}\)(xi*, yi*, zi*) .

Moving the particle along C from the initial point to the terminal point is approximately

\(\sum_{i=1}^n\biggl[\bar{F}\left(x_i^*,y_i^*,z_i^*\right)\cdot\bar{T}\left(x_i^*,y_i^*,z_i^*\right)\biggr]\Delta s_i\)

Recall that the definition of a definite integral is:

\(\lim_{n\to\infty}\sum_{i=1}^n\Delta xf\left(x_i^*\right)=\int_a^bf\left(x\right)dx.\)

As n, the number of subintervals, increases, the approximation improves. Thus, the force field \(\bar{F}\) is defined as the limit of the Riemann sums, namely,

\(\int\limits_{\mathrm{C}}\bar{F}\left(x,y,z\right)\cdot\bar{T}\left(x,y,z\right)ds=\int\limits_{\mathrm{C}}\bar{F}\cdot\bar{T}ds\)

If the curve C is given by the vector equation \(\overline{l}\left(t\right)=x\left(t\right)\overline{i}+y\left(t\right)\overline{j}+z\left(t\right)\overline{k} ,\) where \(t\in[a,b],\) then the tangent unit vector is

\(\bar{T}\left(t\right)=\frac{\overline{l'}\left(t\right)}{\left|\overline{l'}\left(t\right)\right|}.\)

Then, using the definition of a path integral and the fact that \(ds=\begin{vmatrix}l^{\prime}(t)\end{vmatrix}dt,\) which follows from the fact that \(\frac{ds}{dt}\) is the rate of change of the arc length over time; i.e., the speed of the particle, and since the motion of the particle is described by a position function, we obtain

\(\int_a^b\biggl[\overline{F}\left(\overline{l}\left(t\right)\right)\cdot\frac{\overline{l'}\left(t\right)}{\left|\overline{l'}\left(t\right)\right|}\biggr]\biggl|\overline{l'}\left(t\right)\biggr|dt=\int_a^b\overline{F}\left(\overline{l}\left(t\right)\right)\cdot\overline{l'}\left(t\right)dt=\int_a^b\overline{F}\cdot d\overline{l}\)

Example. If \(\bar{F}=\langle2xy,y\rangle,\) evaluate \(\int\bar{F}\cdot d\bar{L}\) around L as shown in the figure below.

graph

Solution. We split L into three pieces as shown and consider each integral separately

graph

We first consider L1. We will parametrize this line by x=2, y=t, 0≤t≤2. Then L1 is given by \(\overline{l}\left(t\right)=\left\langle2,t\right\rangle,0\leq t\leq2,\) and \(\overline{l^{\prime}}(t)=\langle0,1\rangle.\) Evaluating the integral, we obtain

\(\begin{aligned}\int_{L_1}\overline{F}\cdot d\overline{l}=\int_0^2\overline{F}\left(\overline{l}\left(t\right)\right)\cdot\overline{l^{\prime}}\left(t\right)dt=\int_0^2\left\langle4t,t\right\rangle\cdot\left\langle0,1\right\rangle dt=\int_0^2tdt=\frac{t^2}{2}|_0^2=2.\end{aligned}\)

Now we consider L2. We will parametrize this line by x=2-t, y=2, 0≤t≤2. Then L2 is given by \(\overline{l}\left(t\right)=\left\langle2-t,2\right\rangle,0\leq t\leq2,\) and \(\overline{l^{\prime}}(t)=\langle-1,0\rangle.\) Evaluating the integral, we obtain

\(\begin{aligned}
\int_{L_{2}}\bar{F}\cdot d\bar{l}& =\int_0^2\overline{F}\left(\overline{l}\left(t\right)\right)\cdot\overline{l'}\left(t\right)dt=\int_0^2\left\langle4\left(2-t\right),2\right\rangle\cdot\left\langle-1,0\right\rangle dt \\
&=\int_0^2-4\left(2-t\right)dt=-4\int_0^2\left(2-t\right)dt=-4\left[2t-\frac{t^2}2\right]_0^2=-8.
\end{aligned}\)

Finally, we consider L3. We will parameterize this line by x=2 sin t, y= 2cos t, \(0\leq t\leq\frac\pi2\text{.}\) Then L3 is given by \(\overline{l}\left(t\right)=\left\langle2\sin t,2\cos t\right\rangle,\) \(0\leq t\leq\frac\pi2\text{,}\) and \(\overline{l^{\prime}}(t)=\langle2\cos t,-2\sin t\rangle.\) Evaluating the integral, we obtain

\(\begin{aligned}
\int_{L_{3}}\bar{F}\cdot d\bar{l}& =\int_0^{\frac{\pi}{2}}\bar{F}\left(\overline{l}\left(t\right)\right)\cdot\overline{l^{\prime}}(t)dt \\
&=\int_0^{\frac\pi2}\left\langle8\sin t\cos t,2\cos t\right\rangle\cdot\left\langle2\cos t,-2\sin t\right\rangle dt \\
&=\int_0^{\frac\pi2}(16\sin t\cos^2t-4\sin t\cos t)dt.
\end{aligned}\)

We can evaluate this integral using substitution. Let u = cos t, then du = -sin t dt, and we evaluate from cos 0 = 1 to \(\cos\frac\pi2=0\) and obtain

\(\begin{aligned}&=\int_1^0\left(-16u^2+4u\right)du\\&=\left[-\frac{16}3u^3+2u^2\right]_1^0\\&=\frac{16}3-2=\frac{10}3\end{aligned}\)

Putting it all together, we obtain

\(\int_L\overline{F}\cdot d\overline{l}=\int_{L_1}\overline{F}\cdot d\overline{l}+\int_{L_2}\overline{F}\cdot d\overline{l}+\int_{L_3}\overline{F}\cdot d\overline{l}=2+\left(-8\right)+\frac{10}3=-\frac83.\)