Indefinite Integrals

PDF Download

Let \(k, n\), and \(a\) be any real number (constants). Assume that \(a > 0\) and that \(a\) for formulas 6, 8-11 and, and 13. The integration constant is denoted as \(C\).

  1. \(\int kf(x)dx=k\int f(x)dx\)

     

  2. \(\int[f(x)+g(x)]dx=\int f(x)dx+\int g(x)dx\)

     

  3. \(\int kdx=kx+C\)

     

  4. \(\int x^ndx=\dfrac{x^{n+1}}{n+1}+C,\quad n\neq-1\)

     

  5. \(\int\frac{1}{x}dx=\int x^{-1}dx=\ln\mid x\mid+C\)

     

  6. \(\int e^{kx}dx=\frac{e^{kx}}{k}+C\)

     

  7. \(\int a^x=\frac{a^x}{\ln a}+C\)

     

  8. \(\int\cos(kx)dx=\frac{\sin(kx)}{k}+C\)

     

  9. \(\int\sin(kx)dx=-\frac{\cos(kx)}{k}+C\)

     

  10. \(\int\sec^2(kx)dx=\frac{\tan(kx)}{k}+C\)

     

  11. \(\int\sec(kx)\tan(kx)dx=\frac{\sec(kx)}{k}+C\)

     

  12. \(\int\sec xdx=\ln\lvert\sec x+\tan x\rvert+C\)

     

  13. \(\int\tan(kx)dx=\frac{\ln\left|\sec(kx)\right|}{k}+C\)

     

  14. \(\int\frac{1}{\sqrt{a^2-x^2}}dx=\frac{1}{a}\arcsin\left(\frac{x}{a}\right)+C\)

     

  15. \(\int\frac{-1}{\sqrt{a^2-x^2}}dx=-\frac{1}{a}\arccos\left(\frac{x}{a}\right)+C\)

     

  16. \(\int\frac{1}{x^2+a^2}dx=\frac{1}{a}\arctan\left(\frac{x}{a}\right)+C\)