Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let ˉF be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then,
∬S¯F⋅d¯S=∭Ediv¯FdV.
Thus, the Divergence Theorem states that, under the given conditions, the flux of ˉF across the boundary surface of E is equal to the triple integral of the divergence of ˉF over E.
Example 1. Let S be the circle given by x2+y2≤4 and z=5 and let ¯F=y2¯i+x2¯j+z2¯k. Compute ∬SˉF⋅d¯s.

Solution. We use parametric coordinates as follows:
¯r(u,v)=⟨u,v,5⟩,ˉTu=⟨1,0,0⟩,¯Tν=⟨0,1,0⟩,¯N=¯TuׯTv=|¯i¯j¯k100010|=¯k.
We then calculate and obtain
∬S¯F⋅d¯s=∬x2+y2≤4⟨ν2,u2,25⟩⋅⟨0,0,1⟩dA=∬x2+y2≤425dA=25(16π)=400π.
Example 2. Let W be the cylinder given by x2+y2≤4 and 0≤z≤5 and let ¯F=xy2¯i+y3¯j+4x2z¯k. Compute the flux of ˉF across the boundary surface of W.
Solution. We begin by calculating the divergence of ˉF
div¯F=∂xy2∂x+∂y3∂y+∂4x2z∂z=y2+3y2+4x2=4y2+4x2.
Then, applying the Divergence Theorem, we obtain
∬SˉF⋅d¯s=∬S⟨xy2,y3,4x2z⟩⋅d¯s=∭Wdiv¯FdV=∭W(4y2+4x2)dV=4∬x2+y2≤4(∫50(x2+y2)dz)dA=20∬x2+y2≤4(x2+y2)dA=20∫2π0∫20r2rdrdθ=20∫2π0∫20r3drdθ=20∫2π0[14r4]20dθ=20×2π×4=160π,
where we’ve used the polar coordinates
x=rcosθ,y=rsinθ,r2=x2+y2,dA=rdrdθ.