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Objective: To compare different scoring parameter settings in actigraphy software for inferring sleep and
wake bouts for validating analytical techniques outside of laboratory environments.

Design: To identify parameter settings that best identify napping during periods of wakefulness, we
analyzed 137 days on which participants reported daytime napping, as compared with a random subset
of 30 days when no naps were reported. To identify settings that identify periods of wakefulness during

i%wf:di" sleep, we used data from a subsample of women who reported discrete wake bouts while nursing at night.
Napiing v Setting: Equatorial Tanzania in January to February 2016.
Validation Participants: The Hadza—a non-industrial foraging population.

Measurements: Thirty-three subjects participated in the study for 393 observation days. Using the Bland-
Altman technique to determine concordance, we analyzed reported events of daytime napping and night-
time wake bouts.
Results: Only 1 parameter setting could reliably detect reported naps (15-minute nap length, <50 counts).
Moreover, of the 6 tested parameter settings to detect wake bouts, the setting where the sleep-wake
algorithm was parameterized to detect 20 consecutive minutes throughout the designated sleep period
did not overestimate or underestimate wake bouts, had the lowest mean difference, and did not
significantly differ from reported wake-bout events.
Conclusion: We propose operational definitions for multiple dimensions of segmented sleep and conclude
that actigraphy is an effective method for detecting segmented sleep in future cross-site comparative
research. The implications of such work are far reaching, as sleep research in preindustrial and developing
societies is documenting natural sleep-wake patterns in previously inaccessible environments.

© 2016 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

Hunter-gatherer
Segmented sleep

Introduction gold standard for quantifying sleep, it remains cumbersome,
expensive, and difficult to apply with ambulatory participants.
Thus, actigraphy is increasingly used to study the effects of
psychological disorders, stress, and disease on sleep,!™> and to
investigate sleep in various populations living in postindustrialized

Western societies.®® More recently, actigraphy has been used to

Actigraphy, obtained via wrist-worn portable devices, is a valu-
able approach to investigate sleep outside of clinical or laboratory set-
tings. Although polysomnography (PSG) is currently considered the
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measure sleep in developing countries, including studies
that have characterized sleep in preindustrial societies'""'? and
high-latitude populations with long photoperiods.'>!* Given that
actigraphy-based research is a growing domain, validating
accelorometry-based data in a variety of study designs has been
identified as a critical goal for current sleep research.!®
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Unlike PSG, actigraphy cannot distinguish between sleep stages,
including non-rapid eye movement and rapid eye movement.
However, a comprehensive literature demonstrates that actigraphy
can accurately detect sleep vs wake states when compared with
PSG.51517 These results clearly show that actigraphy is an efficient
and cost-effective technique to study sleep in natural settings.
However, most of these studies pertain to nighttime sleep and
function best in the cases of monophasic, consolidated sleep. A critical
question in the study of sleep in traditional societies (rural agricultur-
alists, pastoralists, and hunter-gatherers) concerns the operational
definition of segmented sleep (ie, both daytime naps and nighttime
wake bouts), and specifically how data generated by actigraphy can
be used to accurately identify daytime napping and nighttime
waking. It remains unclear whether actigraphy can reliably infer
patterns of shorter periods of segmented sleep-wake phases (either
daytime napping or nighttime waking).

Kanady et al'® used PSG to confirm that actigraphy can be used
to differentiate sleep from wake in nap and no-nap periods reliably
in a clinical setting, using the “minor rest interval” feature of the
Respironics Actiwatch-64 software. Other softwares have a similar
feature, whereby sleep segmentation can be identified by manually
setting the number of major sleep intervals per 24-hour period.
However, if the software is configured to identify 2 sleep periods, it
may identify those 2 sleep periods during the night, or it may infer
a single bout of night sleep plus a daytime nap. The drawbacks to
this process are that (1) it requires a priori knowledge of the
presence/absence of segmentation and (2) it is nonspecific with
regard to identifying daytime naps vs nighttime wake bouts. It is
especially important to not require specific a priori knowledge of
whether or not such segmentation exists when attempting to
impartially investigate whether or not such segmentation occurs in
field settings.

In general, actigraphy is reliable at detecting naps, but less reliable
at detecting the absence of naps.'® The most common actigraphic
measures for arousal during nighttime sleep are wake after sleep
onset, sleep efficiency (actual sleep time expressed as a percentage
of time in bed), and sleep fragmentation (sum of mobile time and
immobile bouts as a percentage). However, these measures fail to
identify long, contiguous bouts of activity that are relevant to
discriminating between brief arousals (a common occurrence while
transitioning between sleep stages,'® and substantial periods of
nighttime awake activity where does the parenthesis close?.

Few validation studies have been performed on actigraphy and
napping and, to our knowledge, no such study has been performed
in nonlaboratory, field environments or across nonindustrial socie-
ties. Indeed, a previous study called for additional validation research
in a wide variety of populations.'® Circadian rhythms are stronger in
non-Western populations that have more exposure to natural light
and temperature cycles, and thus greater entrainment to circadian
cues.'C It is essential to validate studies in these environments, be-
cause the circadian rhythm and sleep duration among populations
living in the postindustrialized West are attenuated by highly insulat-
ed, temperature- and humidity-controlled buildings in ways that
may impact sleep duration and phasing. To reliably identify similari-
ties and differences in sleep patterns across populations, it is critical
that methodological issues are not producing artificial differences in
sleep recordings that do not actually reflect real differences in sleep
patterns in such dramatically different environments.

Several studies have used actigraphy to report daytime naps, yet
operational definitions of daytime napping or nighttime waking
remain elusive. Thorpy?° defined a nap as any short sleep episode
out of bed, without criteria on duration. Yoon et al® used this
definition to report the percentage of participants that showed any
napping behavior throughout their study period. Yetish et al'?
similarly reported the percentage of days in which participants

napped, based on both automatic algorithmic detection of nap pe-
riods greater than 15 minutes and an additional manual macroscopic
review of actigraphy data to identify periods of daily activity less than
or equal to that during confirmed night sleep periods. Evans et al?!
surveyed Old Order Amish by reporting the percentage of individuals
that had napped in the previous week. Overall, subject reported sleep
events have been found to be more accurate than actigraphy in
determining discrete episodic events, particularly with respect to
wake events.”

The ability of actigraphy to more accurately infer daytime sleep
and nighttime wake would enhance the scope of studying sleep not
only in mobile individuals within industrial societies, but also in sub-
jects from nonindustrial societies in logistically challenging environ-
ments. One particularly salient issue in widely applying actigraphy
to assess sleep, though, is that the specific parameter settings used
to identify nap duration and activity counts can impact sleep-wake
determinations. There are 2 levels at which software parameter set-
tings can be adjusted to improve the detection rate of naps with
actigraphy. The first is at the level of raw movement data, hereafter
referred to as counts. In the process of implementing a sleep-
scoring algorithm (such as that described in?* some threshold
value is imposed on the data to distinguish likely-sleep (score of
0) from likely-wake (score of 1) on a per-epoch (ie, per-minute)
basis. That binary data are then secondarily scored according to inter-
val length of continuous 1 and 0 second. The maximum and mini-
mum interval lengths used for this secondary scoring are also
adjustable parameter settings. The first level is relatively device-
specific, because the units of measure for raw-movement can vary
by manufacturer, requiring that threshold values scale up or down
accordingly. The second level can be readily compared across devices,
because the binary data values are more biologically meaningful and
once removed from the raw, device-specific data.

The present study aims to determine whether actigraphy can
accurately detect episodes of reported daily nap and nighttime
wake-bout events among a nomadic foraging population, the Hadza
of Tanzania. We used the Motionwatch 8 (CamNtech) to collect
actigraphy data and CamNtech's associated software to predict naps
and wake bouts under different parameter settings. We aimed to
identify the optimal parameters for detecting naps and wake bouts
to test for the most reliable settings. Reliability was established in a
2-fold approach: rates of actigraphically identified naps were com-
pared with participant self-report for agreement, and then the
highest performing parameter configuration from this analysis was
compared epoch-by-epoch to the method used in the previous
study on Hadza sleep patterns,'? where software settings were con-
figured to identify 2 major sleep intervals per 24-hour period. Finally,
we examined whether these settings have the capacity to discrimi-
nate the absence of napping.

Participants and methods

The Hadza are considered to be “median” hunter-gatherers, as
they lie near the median value for most ecological and life history
traits among subtropical hunter-gatherers.?*> They live in an east
African environment with an effective temperature of 17°C, which
is close to the median for warm-climate hunter-gatherers (16.3°C).
The annual Hadza diet consists of approximately 43% hunted foods
(game animals, birds, and honey) and 57% gathered foods >! (median
value for African hunter-gatherers is 32% and 67%, respectively), with
high variability between seasons and across years. Their median local
group home range is 122 km?, although range sizes are declining due
to adjacent population pressure and globalization.>* The Hadza ex-
hibit high levels of sexual division of labor, with males acting as pri-
mary hunters and females as primary gatherers. Importantly, the
median local group size is approximately 30 for the Hadza (mean
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group size for warm-climate hunter-gatherers is 26), and groups are
characterized by central-place provisioning, with individuals
returning to a central place to distribute food.>? The most prominent
material item used as a sleeping platform is a hardened impala skin
and blankets. During some seasons, sleep is accompanied by the use
of fire. Married couples sleep together with offspring, usually on the
same bed. Seasonal variation in sleeping sites occurs; during the dry
season, it is quite common to sleep outside, whereas during the
rainy season, almost every individual sleeps within their thatched
grass huts.

Participants were healthy adults older than 18 years, residing in
nomadic or seminomadic camps that engaged in daily foraging.
Thirty-three subjects completed the study, representing 21 women
(mean age, 349 + 14.3 years) and 12 men (mean age, 35.6 +
14.7 years). Exclusion criteria included self-reported insomnia or
physical disability due to injury or infirmed status that prevented
an individual from engaging in active foraging. No individuals
reported sleep problems, although 3 individuals were excluded
from the analysis due to injury or infirmed status. All research was
approved by the Tanzanian Commission for Science and Technology
(COSTECH) and the Tanzanian National Institute for Medical
Research (NIMR). All eligible subjects gave their verbal informed
consent, as outlined by the institutional review board for human
subjects research at the University of Nevada, Las Vegas, and
Duke University.

We used the Motionwatch 8 actigraph (CamNtech), with all
watches configured to generate data in 1-minute epochs. Subjects
were asked to press the event marker preceding any sleep event
throughout the study, including sleep after nighttime wake bouts
and before initiating daytime naps. Participants were given a sleep
survey at the beginning of the study period (January 20-February
11, 2016) to screen for healthy sleep, and they were instructed to
not to remove watches throughout the study period. Participants
also answered daily questionnaires (for every day throughout the
study period) about the frequency of daytime sleep bouts (ie, napping)
and discrete nighttime wake bouts. During daily questionnaires
subjects were asked if they had pressed the event marker or if there
were any technical difficulties, including instances of watch removal,
during the previous day. There was not a single point throughout the
study when a watch was observed to be removed, or reported to be
removed by a participant. To ensure that nighttime wake bouts were
discrete events requiring consecutive epochs of arousal between
sleep onset and sleep end, we further identified nighttime wake
bouts reported by nursing mothers.

Actigraph data were scored using the CamNtech MotionWare
1.1.15 program. The software has a nap analysis function that detects
periods of inactivity that are attributable to napping or microsleeps.
To achieve this, the software has parameters that the user can adjust.
The first parameter of interest for this study, pertaining to the raw
movement data itself, is hereafter referred to as the nap activity
threshold. At this level, the epoch within a specified period must be
less than or equal to the entered value for the period to be scored as
a nap. For example, if the threshold is set to 10, the period will be
scored as a nap if every epoch in a specified time period <10 activity
counts (note: the units of an “activity count” and related actual bodily
motion vary considerably from device to device, but can be adjusted
in processing to yield comparable measures of sleep and activity
across devices?). The second set of parameters pertain to the
higher-level secondary processing of binary likely-sleep/likely-wake
data, which we hereafter refer to as the nap detection method, because
the software identifies nap episodes themselves. Minimum nap length
sets the minimum number of epochs of inactivity required to be
scored as a nap. Maximum nap length sets the maximum period of
inactivity required to be scored as a nap. We compared sleep
calculations derived from using these parameters to the automatic

software scoring that relies on a priori knowledge of sleep segmenta-
tion to measures sleep, which we refer to as the daytime sleep detec-
tion method, because it does not identify nap episodes themselves.
In applying this method, we identified examine sleep periods during
the day, and then used the software's automatic sleep scoring to
generate an epoch-by-epoch output classifying each epoch as either
sleep or wake.

Using these different methods to create the sleep measures for the
sake of comparison, we conducted 2 epoch-by-epoch (minute-by-
minute) comparisons: (i) between reported daytime napping and
actigraphy and (ii) between reported nighttime wake bouts and
actigraphy. For daytime napping, we examined nine parameter
setting combinations (Table 1), 3 pairs of min-max length intervals
for napping (5-210, 15-210, and 40-210 minutes) each with 3 nap
activity thresholds (10, 25, and 50). From our daily questionnaire,
137 days with at least one nap were reported among the 393 days
of data collection. For comparative purposes, we randomly generated
30 days from the sample of 262 days in which no nap was reported by
our subjects. Subjects wore the watches for an average of 14 days
(range, 10-20).

For nighttime wake bouts, we generated raw count data and
binary “sleep-wake” outputs from the MotionWatch software and
imported them into R to identify consecutive periods of awake be-
havior during the nighttime sleep. We took a similar approach as
the daytime nap analysis, but aimed to identify periods of wakeful-
ness rather than periods of sleep in the actigraphy data. Specifically,
we used the sleep-wake output and the raw count data and focused
on 6 parameter settings in total (Table 2): for the sleep/wake output,
we used 15, 20, and 30 consecutive wake epochs as determined by
the MotionWare sleep algorithm. That is, a wake bout was counted
if there were consecutive algorithm defined “wake” epochs. We
also analyzed raw count data with 3 sets of parameters that were
chosen on the basis that they showed no overestimation or underes-
timation bias for determining nap episodes—in other words, the most
reliable settings from the daytime nap analysis (see results below).
Comparisons between reported and actigraphic events were assessed
for accuracy, sensitivity, and specificity.

Statistical analysis

Statistical analyses were conducted using R version 3.1.3.2°
Throughout, we pooled the actigraphy data of the participants for analysis.
We used the Bland-Altman technique with the BlandAltmanLeh pack-
age to plot the difference between actigraphy and reported events
against the average of actigraphy and reported events to determine
whether there is a bias in actigraphy.?’ This technique was preferred
because it is based on the agreement between 2 quantitative
measurements,?® and because it has been used in previous nap
validation studies in controlled environments.'® Plotting the

Table 1

The 9-nap detection parameter settings tested. Using these parameters, we assessed
how well the actigraphy software detected reported events. The maximum duration
for sleep during the day was set to 3.5 hours. Throughout the study, no naps longer
than 3.5 hours were detected.

Parameter Nap activity threshold Min nap length Max nap length
setting (counts) (min) (min)
P1 10 5 210
P2 25 5 210
P3 50 5 210
P4 10 15 210
P5 25 15 210
P6 50 15 210
P7 10 40 210
P8 25 40 210
P9 50 40 210
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Table 2
The 6 nighttime wake-bout detection parameter settings tested against reported
events.

Parameter setting Data type Consecutive epochs Consecutive
with counts => epochs with wake
Sleep-wake Algorithm N/A 15
Sleep-wake Algorithm ~ N/A 20
Sleep-wake Algorithm  N/A 30
P4 wake detection Counts 10 15
P5 wake detection ~ Counts 25 15
P6 wake detection Counts 50 15

We used the MotionWare output for sleep analysis that produces an epoch-by-epoch
determination of sleep or awake. For comparison, we used the nap detection parameter
setting (P6) that did not overestimate or underestimate naps and had the lowest mean
difference; instead of assessing daytime sleep, however, they were used to assess
nighttime wake events.

differences between 2 methods permits comparison of the mean of
the measurements from both methods and reveals the distance (in
the measurement units) of the gap between the x-axis and corre-
sponding zero difference; thus, the distance of this gap illustrates
the bias between the methods. To determine the significance of the
mean difference obtained with the Bland-Altman technique, we
used the upper and lower limits from the 95% confidence interval.
The bias in actigraphy was represented as the mean difference be-
tween actigraphy and reported events, with positive mean difference
indicating overestimation and negative mean difference indicating
underestimation. We selected an a priori range of 0-0.5 naps as the
biologically relevant threshold for measurement error.?® This indi-
cates that average deviations between tested methods of half a nap
show that one method identifies a particular reported event that
the other does not.

A day-by-day analysis was conducted for 167 total nights to
determine both (i) agreement and (ii) accuracy, sensitivity, and
specificity between 2 nap detection methods. In previous work with
field actigraphy,'? the daytime sleep detection method was used to
analyze the daytime period to determine whether napping occurred
during the day by applying the software's sleep algorithm to assess
sleep during the day. A conservative, time-intensive method foregoes
automated detection to visually assess each 24-hour output in the
analysis by manually interfacing with the software to select each
nap according to event markers and expert judging. Using this
conservative method, we compared (i) the nap detection method
that used the parameters with the greatest reliability found in this
study (parameter setting 6, see results) against the (ii) daytime
sleep detection method.

We used the definitions established by Tilmanne et al®>° to
calculate accuracy, sensitivity, and specificity. When compared with
self-reported events, a true positive (TP) indicates that the actigraph
identifies napping correctly, a true negative (TN) indicates that the
actigraph identifies the absence of napping correctly, a false positive
(FP) indicates the actigraph misidentifies napping, and a false
negative (FN) indicates that the actigraph misidentifies the absence

of napping. Accuracy was defined as (TP + TN)/(TP + TN + FN + FP)
and represents the agreement rate between manually scored self-
reports and the actigraph. Sensitivity was defined as TP/(TP + FN)
and represents the percentage of days identified correctly as
having a nap. Finally, specificity is defined as TN/(TN + FP) and
represents the percentage of days identified correctly as having
an absence of napping. Because the data showed a nonnormal
distribution, we used a Wilcoxon signed rank test to compare the
total duration of daytime sleep (ie, that sum of minutes scored as
nap behavior during the outside of bed daily period) estimated by
both methods.

Results
Daytime sleep detection (napping)

A total of 167 days were analyzed. Proportionally, awake event
markers were used 0.73 (SE = 0.02) of the total wake events and
sleep event markers were used for 0.88 (SE = 0.03) of the time
total sleep events. Results are presented in Table 3, with parameter
settings labeled P1 to P9 and corresponding to sets of 3 parameter
values given in Table 1 for minimum, maximum, and threshold. The
Bland-Altman technique demonstrated that P6 (min-max of 15-
210 minutes, with threshold <50 counts) shared the greatest
agreement with reported napping events. Settings for P4, P5, and
P6 produced results that were within the 0.5 a priori determination
of successful nap detection, but P6 had the lowest mean difference
(0.16). Based on the confidence intervals, P1, P2, and P3 settings
overestimated daytime napping and P7, P8, and P9 settings for
the 3 parameters underestimated daytime napping. P4, P5, and P6
neither overestimated nor underestimated napping significantly.
Only settings in P6 did not differ significantly from reported events
(see Fig. 1).

Nighttime wake-bout detection

Results are presented in Table 4. Fifty-five nights in which nursing
mothers reported a presence or absence of wake-events were ana-
lyzed. The Bland-Altman technique demonstrated that the 20-minute
sleep-wake algorithm, where 20 consecutive epochs are required to
constitute a nighttime wake bout, is the method with the highest
agreement with reported events (mean difference, 0.16). In addition,
of the 3 sets of parameters that only analyzed raw count data and not
data output from the sleep software's binary sleep-wake determina-
tion, the setting that had a threshold of 210 counts for 15 consecutive
epochs (mean difference, 0.42) fell under the 0.5 a priori determina-
tion of successful wake-bout detection. Based on the confidence in-
tervals, the 15-minute sleep-wake algorithm overestimated wake
bouts and the 30-minute sleep-wake algorithm and other parameter
sets underestimated wake bouts (Fig. 2).

Table 3
Bland-Altman statistics for tested agreement of nap detection parameter settings and reported nap events.
P1 P2 P3 P4 P5 P6 P7 P8 P9

Mean difference -1.56 —2.46 —4.21 0.37 0.30 0.16 0.83 0.81 0.75
Upper limit 3.30 3.60 425 217 2.11 2.09 2.14 2.11 2.08
Lower limit —6.42 —8.51 —12.68 —1.42 —1.51 —-1.77 —0.46 —0.48 —0.60
Critical difference 4.86 6.05 8.46 1.80 1.81 1.93 130 1.30 1.96
Estimation Over Over Over - - - Under Under Under

Significance

The mean difference (estimated bias of actigraphy nap detection), upper and lower limits (95% confidence interval), and critical difference (2 times the SD of differences) are shown
for all settings. Estimation indicates whether the parameter settings significantly overestimate or underestimate naps, compared with reported naps. A failure to reach the signif-
icance threshold indicates that actigraphy does not systematically mis-score the presence or absence of a nap; this was true only for P6.
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Accuracy, sensitivity, and specificity

Compared with the “conservative” method, where event markers
and self-reported naps are manually identified, the P6 nap detection
method has the greatest accuracy and specificity, whereas the
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Fig. 1. Bland-Altman graphs for daytime napping. The graphs showed the P6 setting to
be characterized by the least bias. Plotted difference between reported and actigraphic
naps (y-axis), against the mean of both reported and actigraphy naps (x-axis; see
middle dashed line), with 95% limits of agreement (the bottom and top dashed
lines); the scale of dots indicates the number of overlapping data points (as indicated
in the legend). Bias is indicated by the middle dashed line, where departures from
zero mean difference (y-axis) indicate greater bias. A representative graph is displayed
for each of the 3 min-max nap length settings: P1 (a), P6 (b), and P8 (c).

daytime sleep detection method has the greatest sensitivity
(Table 5). In addition, a Wilcoxon signed rank test revealed that the
daytime sleep detection method (mean, 38.8 4+ 55.8) estimated
greater total napping minutes when compared with manual scoring
(mean, 27.2 4+ 38.1; P <.001). We found no significant differences
between the manual scoring and the results from using P6
settings (mean, 20.2 4 35.8; P = .19), indicating that the P6 nap
detection method better estimated the duration of time spent in
daytime sleeping. In addition, when testing correspondence
between the daytime sleep detection method and manual scoring,
the Bland-Altman test revealed a mean difference in time spent day-
time sleeping of —12.73 (upper limit = 59.7, lower limit = —34.1,
critical difference = 46.9), with a tendency for overestimation.
In contrast, when comparing total time spent daytime sleeping,
the mean difference between the P6 nap detection method and
manual scoring technique was 4.13 (upper limit = 40.4, lower
limit = —31.1, critical difference = 36.3), with neither a tendency
for overestimation or underestimation.

Discussion

This study examined the performance of an actigraphy-scoring al-
gorithm to distinguish daytime sleep and nighttime wake bouts
based on different parameter settings. The results suggest that
actigraphy can be a useful tool for detecting sleep segmentation, yet
calculated sleep measures are highly dependent on parameter set-
tings. With respect to napping, the duration parameter, such as
short (5 minutes) or long (40 minutes), can overestimate or under-
estimate napping, respectively. Parameter settings that captured
moderate duration of inactivity (15 estimate) and large count inter-
val (£50) showed the greatest agreement with reported napping
events; it was the only combination of settings that showed a nonsig-
nificant difference with reported events and had the least overall
mean difference. With respect to wake bouts, certain parameter set-
tings, such as the sleep-wake detection algorithm coded to detect 15
consecutive minutes of wake during the nighttime sleep period,
overestimated wake bouts, whereas the sleep-wake detection algo-
rithm coded to detect 30 consecutive minutes of wake during the
nighttime sleep period underestimated wake bouts. In addition, raw
counts coded to detect 15 consecutive minutes of <25, or <50 counts
underestimated wake bouts compared with reported events. The
setting where the sleep-wake algorithm was parameterized to detect
20 consecutive minutes throughout the designated sleep period did
not overestimate or underestimate wake bouts, had the lowest
mean difference, and did not significantly differ from reported
wake-bout events; thus, this method was the most reliable.

With respect to detecting daytime sleep bouts, the comparison
between the daytime sleep detection method (where the sleep
analysis algorithm is specifically applied to a segment of time
a priori known to have a nap) and the nap detection method
(which identifies nap events without a priori knowledge, using pa-
rameter settings P6; Table 1) showed support for the latter method
as the most reliable. First, the P6 parameter setting showed the
greatest accuracy (77%) for detecting both the presence and absence
of naps, with notably high specificity in detecting the absence of naps
(84%). In addition, when nap durations were compared between
manual scoring and each of the 2 methods, the P6 parameter settings
showed no difference in calculated total sleep durations. Thus, we
recommend it as a useful approach for future detection of daytime
sleep in traditional populations.

Based on this current analysis, we propose operational definitions
for the 2 dimensions of sleep segmentation involving naps or
nighttime awakenings in the context of actigraphy. Thorpy?° defined
a nap as any short sleep episode outside the bed without criteria on
duration. Kanady et al'® validated accelerometric measures of naps
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against PSG, but using a method that required a priori knowledge of a
napping event's existence. In trying to develop an algorithmic way of
automatically identifying naps reliably (relative to self-report), we
operationalized this definition within the context of actigraphy: a
nap is constituted as a 15-minute period from the beginning of
sleep end until sleep onset with an activity count of less than or
equal to 50. In addition, for reports of wake bouts, we used the partic-
ipants among the Hadza who were nursing mothers as benchmarks
for biologically-relevant, sustained nighttime activity performed
after sleep onset and before sleep end. Therefore, we operationalized
this definition of segmented sleep as: a wake bout is constituted as a
period of 20 consecutive minutes categorized as “awake” from the
beginning time of sleep onset until sleep end. These operationalized
definitions, pertaining to the secondary sleep scoring processes ap-
plied to binary likely-sleep/likely-wake values, are readily applicable
for direct implementation of sleep scoring in any software package
that allows for adjusting these parameters and should not be
sensitive to any issues regarding interdevice differences, at least among
the most commonly used and already validated sleep-monitoring
accelerometer devices.

The use of self-reported data has several limitations. As discussed
previously, PSG is the common “gold standard” for measuring sleep,
yet its application in ambulatory subjects in remote, undeveloped
areas presents several challenges to sleep researchers in field envi-
ronments. Thus, we instead used self-reported instances of daytime
napping and nighttime waking events to assess the performance of
different settings. Self-reporting, however, can be problematic be-
cause it requires subjective recall and reporting of all events. Previous
work in a sample of depressive insomniacs illustrated that self-
reported sleep measures differed from PSG measures, although the
pairwise correlation between PSG and sleep diary reports was
significant.>® In contrast, in healthy, noninsomniac subjects, Kawada’
showed that sleep diary reports of daytime data were more valid for
detecting sleep-wake activity than accelerometer data. In addition,
our subjects were reminded each day, throughout the study duration,
to press the event marker, which our analysis showed they did 88% of
the time. This provided an added level of reliability to the reported
event, given that most of the events were associated with a mark dur-
ing the time of the event and not reliant on recall. Nevertheless,
though, shorter naps, microsleeps, and shorter wake bouts may be
less likely to be reported. Although likely meaningful in the context
of physiological function and sleep regulation, these types of events
are not generally considered the same type of behaviorally significant
events discussed in the context of identifying sleep segmentation
patterns. Overall, we recommend self-reporting as a way forward in

Table 4
Bland-Altman statistics for tested agreement of nighttime wake-bout detection param-
eter settings and reported wake-bout events.

S/IW S/W S/W P4 P5 P6
15min 20 min 30 min inverse inverse inverse
Mean difference —0.69 0.16 0.81 0.42 0.8 1.02
Upper limit 243 2.74 251 3.52 2.81 2.72
Lower limit —382 —241 —0.87 —2.68 —1.21 —0.69
Critical 3.1 2.57 1.69 3.10 2.01 1.70
difference
Estimation Over - Under - Under Under

Significance

The mean difference (estimated bias of actigraphy wake-bout detection), upper and
lower limits (95% confidence interval), and critical difference (2 times the standard
deviation of differences) are shown for all settings. Estimation indicates whether the
settings significantly overestimate or underestimate wake bouts at night, compared
with the reported presence of wake bouts. A failure to reach the significance threshold
indicates that actigraphy does not systematically mis-score the presence or absence of
a wake bout.
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Fig. 2. The 20 minute sleep-wake algorithm, where 20 consecutive epochs are required
to constitute a nighttime wake bout, is the method with the highest agreement with
reported events.

validating actigraphy in field environments until technological
innovation allows for field-based noninvasive PSG sleep staging.
Future work extending from this research could use portable PSG
that have the capacity to measure sleep stages via electroencephalo-
gram, electrooculogram, and electromyogram. Although challenging
due to the limitations of battery life in nonelectric environments and
the limiting aspects (eg, inducing low activity levels) of electrodes on
participants throughout 24-hour use, the application of PSG would
circumvent methodological issues that may arise from reporter bias.

Conclusion

Overall, this study suggests that actigraphy, with the appropriately
designated parameters for nap and wake-bout diagnostics, can be used
for detecting segmented sleep. Furthermore, Kanady et al'® found that
the high-sensitivity setting (ie, the threshold used to algorithmically
determine sleep-wake states) used in most studies is optimal when
investigators are interested in identifying all sleep epochs, but there
is a bias of overscoring sleep. This has implications for future studies
that aim to investigate segmented sleep, as such settings may bias
against the identification of nighttime wake bouts, and studies may
benefit from generating data form both low and high settings. The ben-
efits of moving forward with an operationalized definition of the multi-
ple dimensions of segmented sleep are great. Only with such definitions
will future work be able to test predictions stemming from hypotheses
directed at discovering the natural human sleep-wake pattern.
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Table 5
Accuracy, sensitivity, and specificity values compared 2 nap detection techniques.
Sleep-during-day algorithm Validated P6
Accuracy 66% 77%
Sensitivity 89% 68%
Specificity 47% 84%

Sensitivity indicates the ability of the test to detect napping (true-positive vs false-positive).
Specificity measures how well the test detects the absence of napping (true-negative
vs false-negative), whereas accuracy measures how well the test predicts both
categories. Validated P6 from this study has the greatest accuracy and specificity, but
not sensitivity.
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