Building a Periodic Table

You are a group of four scientists in the year 1904 and you have to try to arrange 30 of the naturally occurring elements in a table based on previous information about Mendeleev's periodic table, Dobereiner's Triads, Newlands' Law of Octaves and the discovery of noble gases.

Each group will be given the atomic radii, ionization energies, and formulas of oxides and hydrides along with chemical reactivity of the elements to aid in the classification and the grouping of the elements. The elements are arranged in a random order with different symbols. Find the identity of the unknown elements and try grouping the elements with similar properties together in a table. (It does not necessarily have to be like the current periodic table. You can be as innovative as you like).

Background information

Dobereiner's Triads

German chemist, Johann Dobereiner noted similar physical and chemical properties among elements and arranged them in Triads (sets of 3) between 1817 and 1829 and observed that the middle element had the atomic mass close to the average of masses of all 3 elements.¹ His table is shown below.

Elements	Atomic	Elements	Atomic Mass	Elements	Atomic Mass
	Mass (amu)		(amu)		(amu)
Li	6.94	Ca	40.078	Cl	35.45
Na	22.99	Sr	87.62	Br	79.904
K	39.098	Ba	137.33	Ι	126.90

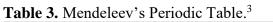
Table 1. Dobereiner's Tria

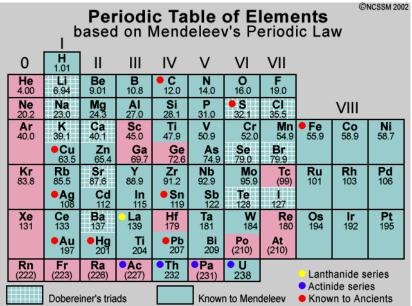
The drawbacks of this were that it worked only for a few elements and it was dismissed as a mere coincidence.

Newlands' Law of Octaves

English chemist, John Newlands offered the Law of Octaves. He arranged the elements in increasing order of atomic masses and noted that every eighth element had properties like the first one.¹ His table is shown below.

204		Nev	vlands' Oct	aves		-
Н	Lí	Ga	В	С	N	0
F	Na	Mg	Al	Si	Р	S
Cl	К	Ca	Cr	Ti	Mn	Fe
Co,Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce,La	Zr	Di,Mo	Ro,Ru
Pd	Ag	Cd	U	Sn	Sb	Те
1	Cs	Ba,V	Та	W	Nb	Au
Pt,lr	Τl	Pb	Th	Hg	Bi	Cs


Table 2. Newlands' Table of Octaves.²


It was however found that this only worked for the first twenty elements and not afterwards.

Mendeleev's Periodic Table

Dmitri Mendeleev in 1869 gave the Periodic Law which states that, "*The Properties of chemical elements are a periodic function of their atomic weights.*"¹

Mendeleev arranged elements in a table with elements with similar properties were placed in the same vertical column (group). Mendeleev considered the overall chemical and physical properties and not just the order of the weights. His table is shown below.

Noble Gases

By 1898 William Ramsay had discovered Helium and Argon, and isolated Neon, Krypton, and Xenon from air into their liquid states at low temperature and high pressure.⁴

Given on the next page is the list of unknown elements along with the corresponding atomic sizes, ionization energies, and formulae of their oxides and hydrides.^{5,6}

Physical and Chemical Properties:

The elements B, C, and M are classified as metalloids.

The element D has an electronegativity of 3.98 which is the highest in the periodic table.

Reactions with water:

K₂O, E₂O, LO, AdO form basic hydroxides on reaction with water.

e.g. $K_2O + H_2O \rightarrow 2$ KOH [KOH is a strong base]

 Af_2O_3 and W_2O_3 form an amphoteric hydroxide (both acidic and basic properties) on reaction with water.

e.g. $Af_2O_3 + 3H_2O \rightarrow 2 Af(OH)_3$ [Af(OH)₃ is amphoteric in nature]

ZX, ZN are acids in aqueous solution.

Note: The symbols of the unknown elements do not correspond to the actual elements. (for example, element P is not phosphorus, element C is not Carbon)

Element	Atomic Radius	I.E. 1	I.E. 2	I.E. 3	Formula of the Oxides	Formula of the Hydrides
А	7.6	1907	3693	14359	AO	AH ₂
В	4.0	3286	6239	9490	B ₂ O ₅	BH ₃
С	3.9	2729	5473	11214	CO ₂	CH ₄
D	1.5	5833	11708	20995	D ₂ O	DH
E	9.2	1398	9137	13394	E ₂ O	EH
F	10.3	1304	7753	11798	F ₂ O	FH
G	6.6	1720	15830	23979	G ₂ O	GH
Ι	3.1	4687	8156	12371	-	-
J	6.7	2078	3975	17046	JO	JH ₂
K	5.8	1805	25324	40998	K ₂ O	KH
L	5.0	2560	5034	26832	LO	LH ₂
М	4.3	2644	5335	11458	MO ₂	MH ₄
N	3.3	3955	7297	12041	N ₂ O	NH
Р	1.1	8232	18219		-	-
Q	3.6	3265	7096	10319	QO ₂	QH ₂
R	8.4	1453	10590	15337	R ₂ O	RH
S	2.3	3770	8164	16033	SO ₂	SH_4
Т	3.4	3511	6617	10113	T_2O_5	TH ₃
U	3.1	3469	7814	11649	UO ₂	UH ₂
V	2.5	5276	9250	13641	-	-
W	4.1	2004	6304	9524	W ₂ O ₃	WH ₃
Х	2.7	4342	7974	13262	X ₂ O	XH
Y	1.9	4866	9910	15886	Y ₂ O ₅	YH ₃
Z	1.8	4553			Z ₂ O	ZH
Aa	1.3	7220	13714	21243	-	-
Ab	3.9	3121	6097	51525	AbO	AbH ₂
Ac	3.0	2778	8422	12699	Ac ₂ O ₃	AcH ₃
Ad	8.8	1745	3349	12492	AdO	AdH ₂
Ae	1.7	4559	11757	18393	AeO	AeH ₂
Af	4.7	2008	6868	10282	Af ₂ O ₃	AfH ₃

Table 4. Table of unknown elements

References:

- Chemistry in a High School Curriculum. Classification of Elements and Periodicity in Properties; Class 11. National Council of Educational Research and Training: New Delhi, India, 1991; Part 1, p71-72,82-86,89-91
- 2) Newlands' Periodic Table. (n.d.). Retrieved October 22, 2019, from <u>https://corrosion-doctors.org/Periodic/Periodic-Newlands.htm</u>
- 3) Mendeleev's Periodic Table. (n.d.). Retrieved November 10, 2019, from https://corrosion-doctors.org/Periodic/Periodic-Mendeleev.htm
- 4) Sir William Ramsay | British chemist | Britannica.com. (n.d.). Retrieved October 22, 2019, from <u>https://www.britannica.com/biography/William-Ramsay</u>
- 5) Elements, Atomic Radii and the Periodic Radii. (n.d.). Retrieved October 22, 2019, from http://www.crystalmaker.com/support/tutorials/atomic-radii/
- Ionization Energies for all the elements in the Periodic Table. (n.d.). Retrieved October 22, 2019, from <u>https://periodictable.com/Properties/A/IonizationEnergies.html</u>