Course Number, Title and Course Description

<table>
<thead>
<tr>
<th>Course Number, Title and Course Description</th>
<th>(Estimated) Course Enrolment</th>
<th>(Estimated) Number of Positions</th>
<th>(Estimated) TA Support</th>
<th>Dates of Appointments and Class Schedule</th>
<th>Qualifications</th>
<th>Duties</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC373H5F, LEC9101 & LEC9102 – Algorithm Design and Analysis</td>
<td>100</td>
<td>2</td>
<td>54 hours per 30 students enrolled per semester</td>
<td>Sept – Dec 2021
LEC9101: Wed 11-1
Online Synchronous
LEC9102: Wed 1-3
Online Synchronous</td>
<td>M.Sc. or higher qualification in Computer Science or a related field. Advanced comprehension of the subject matter as evidenced by research activity and/or advanced teaching experience. Strong organizational, interpersonal, and communication skills. Demonstrated evidence of excellence in teaching preferred. Preference will be given to candidates with demonstrable currency and mastery.</td>
<td>This course will be taught entirely online. Responsible for all aspects of delivering a university credit course including: developing and delivering lectures; preparing tutorials, assignments, tests, and marking schemes; maintaining a course website; providing appropriate contact time outside of class to students through office hours, emails, the course website, and/or the course discussion board; writing the TA contract(s) for the course and supervising the TAs; managing the grading for the course, which is largely done by TAs; doing any grading not handled by TAs; invigilating the final exam; managing the grades and submitting the final course grades; dealing with student petitions; and setting and grading a make-up exam if required. While there is a lot of room for creativity in course delivery, instructors will be expected to</td>
</tr>
</tbody>
</table>

Standard algorithm design techniques: divide-and-conquer, greedy strategies, dynamic programming, linear programming, randomization, network flows, approximation algorithms and others (if time permits). Students will be expected to show good design principles and adequate skills at reasoning about the correctness and complexity of algorithms.
<table>
<thead>
<tr>
<th>Course Number, Title and Course Description</th>
<th>(Estimated) Course Enrolment</th>
<th>(Estimated) Number of Positions</th>
<th>(Estimated) TA Support</th>
<th>Dates of Appointments and Class Schedule</th>
<th>Qualifications</th>
<th>Duties</th>
</tr>
</thead>
</table>

Application Process: If interested, please reply to jobsmcs.utm@utoronto.ca with the following information:
- CUPE 3902 (Unit 3) Employment Application Form: https://uoft.me/CUPE-3902-Unit-3-Application-Form
- your current CV; and
- letter(s) of recommendation addressing your ability to teach

NOTES:
1. Department Standards and Policies are available in the Department office and in the CUPE Local 3902 office.
2. The positions posted above are tentative, pending final course determinations and enrolments.
3. Undergraduate or graduate students and postdoctoral fellows of the University of Toronto are covered by the CUPE 3902 Unit 1 collective agreement rather than the Unit 3 collective agreement, and should not apply for positions posted under the Unit 3 collective agreement.
4. Rate of pay for Sessional Lecturer I is $12,700 per half-course.

Preference in hiring is given to qualified individuals advanced to the rank of Sessional Lecturer II or Sessional Lecturer III in accordance with Article 14:12.
These jobs are posted in accordance with the CUPE 3902 Unit 3 Collective Agreement.