Integration Bee 2023

Instructions

1. Solve as many integrals as you can within the time limit!
2. Each problem is worth one point.
3. You may work on the problems in any order you like.
4. Don't forget $+C$!
5. Show your work! A correct answer with no admissible justification will not count for points. The Integration Judges have the final say in how much work counts as "admissible".
6. Allowed materials: writing utensils, and blank paper for rough work. (No calculators, computers, or notes!)
7. Ties will be broken using additional problems.
8. Time limit: $\mathbf{4 5}$ minutes.

Integrals

1. $\int \frac{e^{1 / x}}{\left(x e^{1 / x}+x\right)^{2}} d x$
2. $\int_{0}^{1} \sqrt{1-\sqrt{x}} d x$
3. $\int \cos (\ln (x)) d x$
4. $\int_{1}^{10}\lfloor\ln \lfloor x\rfloor\rfloor d x$
5. $\int \sqrt[3]{\tan (x)} d x$
6. $\int_{0}^{4} \frac{1}{|x-2|+|x-3|} d x$
7. $\int \sqrt{x+\sqrt{x+\sqrt{x+\cdots}}} d x$
8. $\int_{0}^{1} \ln (1+\sqrt{x}) d x$

Tie Breakers

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function satisfying $f(2 x)=3 f(x)$ for all $x \in \mathbf{R}$, and $\int_{0}^{1} f(x) d x=1$. Calculate $\int_{1}^{2} f(x) d x$.
2. Evaluate the integral: $\int_{0}^{\pi}|\sin (20 x)| d x$.
3. Let $f(x)=x^{3}+x+1$. Evaluate the integral: $\int_{1}^{3} f^{-1}(y) d y$.

Solutions

1. Answer: $\frac{1}{e^{1 / x}+1}+C$.

Solution sketch: Substitute $u=1 / x$, then substitute $v=e^{u}+1$.
2. Answer: $8 / 15$.

Solution sketch: Substitute $u=1-\sqrt{x}$ and use $d x=2(u-1) d u$ to simplify the integral into $2 \int_{1}^{0} u^{3 / 2}-u^{1 / 2} d u$.
3. Answer: $\frac{x}{2}(\sin \ln (x)+\cos \ln (x))+C$.

Solution sketch: Substitute $u \ln (x)$ and rearrange to get $d x=e^{u} d u$. The integral becomes $\int e^{u} \cos (u) d u$, which is a classic integral - solve it by using integration by parts twice.
4. Answer: 9.

Solution sketch: The flooring operation turns this into a "staircase" function which only takes integer values. The key points of interest are when $x=1, x=e \approx 2.71$, and $x=e^{2} \approx 7.38$. So we split the x-axis up into three cases based on this.

- If $1 \leq x<3$, then $1 \leq\lfloor x\rfloor \leq 2$, so $0 \leq \ln \lfloor x\rfloor \leq \ln (2)$. Note $\ln (2)$ is smaller than $\ln (e)=1$. Thus $\ln \lfloor x\rfloor$ is in $[0,1)$, which means $\lfloor\ln \lfloor x\rfloor\rfloor=0$.
- If $3 \leq x<8$, then $3 \leq\lfloor x\rfloor \leq 7$, so $\ln (3) \leq \ln \lfloor x\rfloor \leq \ln (7)$. Note that $\ln (7)$ is strictly smaller than $\ln \left(e^{2}\right)=2$, and $\ln (3)$ is strictly larger than $\ln (e)=1$. Thus,

$$
1<\ln \lfloor x\rfloor<2
$$

We conclude that $\lfloor\ln \lfloor x\rfloor\rfloor=1$ in this case.

- If $8 \leq x \leq 10$, then similar analysis shows $\lfloor\ln \lfloor x\rfloor\rfloor=2$.

Thus the integral can be split up over these three domains, to get:

$$
\int_{1}^{10}\lfloor\ln \lfloor x\rfloor\rfloor d x=\int_{1}^{3} 0 d x+\int_{3}^{8} 1 d x+\int_{8}^{10} 2 d x=9
$$

5. Answer: $\frac{1}{2} \arctan (x)-\frac{x}{2\left(x^{2}+1\right)}+C$.

Solution sketch: The integrand becomes

$$
\left(\frac{1}{x+1 / x}\right)^{2}=\frac{x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1}{x^{2}+1}-\frac{1}{\left(x^{2}+1\right)^{2}}
$$

The first term is $\arctan (x)$. The second term requires a trig substitution with $x=\tan (\theta)$, which simplifies into $\int \cos ^{2}(\theta) d \theta$. This one can be solved with the half-angle identity.
6. Answer: $\frac{1}{4} \ln \left(\tan ^{4 / 3}(x)-\tan ^{2 / 3}(x)+1\right)+\frac{\sqrt{3}}{2} \arctan \left(\frac{2 \tan ^{2 / 3}(x)-1}{\sqrt{3}}\right)-\frac{1}{4} \ln \left(\tan ^{2 / 3}(x)+1\right)+C$.

Solution sketch: Substitute $u=\tan (x)$. Then $d u=\sec ^{2}(x) d x=\left(\tan ^{2}(x)+1\right) d x=(u+1) d x$, so our integral transforms as follows:

$$
\int \tan ^{1 / 3}(x) d x=\int \frac{u^{1 / 3}}{u+1} d u
$$

This can be turned into a rational function using the substitution $v=u^{2 / 3}$, after which you can use partial fractions.
7. Answer: $1+\frac{1}{2} \ln (15) \approx 2.3540$.

Solution sketch: Split into three cases: $0 \leq x \leq 2,2 \leq x \leq 3$, and $3 \leq x \leq 4$. The integrand simplifies greatly in each case.
8. Answer: $\frac{1}{2} x+\frac{1}{12}(4 x+1)^{3 / 2}+C$.

Solution sketch: Let $f(x)=\sqrt{x+\sqrt{x+\cdots}}$ be the integrand in question. Notice that $f(x)$ satisfies the recurrence $\sqrt{x+f(x)}=f(x)$. Solving for $f(x)$ here gives

$$
f(x)=\frac{1+\sqrt{1+4 x}}{2}
$$

which is easy enough to integrate.
9. Answer: $1 / 2$.

Solution sketch: Use integration by parts with $u=\ln (1+\sqrt{x})$ and $d v=d x$. The new integral you end up with is:

$$
\int \frac{\sqrt{x}}{1+\sqrt{x}} d x
$$

This can be simplified into a rational function after substituting $u=1+\sqrt{x}$: you get

$$
\int \frac{(u-1)^{2}}{u} d u
$$

which is easy enough to solve, by expanding the numerator.

