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Abstract
Bayesian nonparametric statistics is an area of considerable research interest. While 
recently there has been an extensive concentration in developing Bayesian nonpara-
metric procedures for model checking, the use of the Dirichlet process, in its sim-
plest form, along with the Kullback–Leibler divergence is still an open problem. 
This is mainly attributed to the discreteness property of the Dirichlet process and 
that the Kullback–Leibler divergence between any discrete distribution and any con-
tinuous distribution is infinity. The approach proposed in this paper, which is based 
on incorporating the Dirichlet process, the Kullback–Leibler divergence and the 
relative belief ratio, is considered the first concrete solution to this issue. Applying 
the approach is simple and does not require obtaining a closed form of the relative 
belief ratio. A Monte Carlo study and real data examples show that the developed 
approach exhibits excellent performance.
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1 Introduction

Let x = (x1,… , xn) be a sample from a distribution F. The goal is to assess the 
hypothesis H0 ∶ F ∈

{
F� ∶ � ∈ Θ

}
 , where 

{
F� ∶ � ∈ Θ

}
 denotes the collection of 

continuous cumulative distribution functions (cdf’s). This problem is known as 
model checking and it is quiet important in statistics. For instance, Jordan (2011) 
placed model checking and hypothesis testing as number one in a list of top-five 
open problems in Bayesian statistics.

Several Bayesian nonparametric procedures have been developed for model 
checking. A main approach considers embedding the proposed model as a null 
hypothesis in a larger family of distributions. Then priors are placed on the null 
and the alternative and a Bayes factor is computed. Using a Dirichlet process for 
the prior on the alternative can be found by Carota and Parmigiani (1996), and 
Florens et  al. (1996). Verdinelli and Wasserman (1998), Berger and Guglielmi 
(2001) and McVinish et al. (2009) considered other types of priors on the alter-
native. Another important approach utilized for model testing is to place a prior 
on the true distribution that is generating the data and then measuring the dis-
tance between the posterior distribution and the hypothesized one. Swartz (1999) 
and Al-Labadi and Zarepour (2013a, b, 2014a, b) used the Dirichlet process as 
a prior and then considered the Kolmogorov distance in order to derive a good-
ness-of-fit test for continuous models. To test for discrete models, Viele (2007) 
used the Dirichlet process and the Kullback–Leibler (KL) divergence. For con-
tinuous model, Viele commented that his method “cannot be used for continuous 
data directly because the Dirichlet Process is discrete with probability 1. The KL 
information between any discrete distribution and any continuous distribution is 
infinity, and thus we must find a nonparametric method that produces continuous 
distributions. We employ a Dirichlet Process Mixture (DPM).” In fact working 
with the Dirichlet Process Mixture adds some complexity to the approach and 
makes it hard to implement by many users. Hsieh (2011) used the Pólya tree as a 
prior and the Kullback–Leibler divergence to test for continuous distributions. To 
judge whether a resulting divergence measure is large or small, he used normal 
approximations based on running a regression of the means and standard devia-
tions. Al-Labadi and Evans (2018) established a new approach for model check-
ing by utilizing the Dirichlet process and relative belief ratios. Then to measure 
the change from a priori to a posteriori they used Cramér-von Mises distance. See 
also Al-Labadi (2018), Al-Labadi et al. (2017), Al-Labadi et al. (2018) and Evans 
and Tomal (2018) for examples of using relative belief ratios in different hypoth-
esis testing problems.

Although the KL divergence sits atop most distance/divergence measures 
(Viele 2007), it follows clearly from the previous discussion that its use along-
side the Dirichlet process is very limited. In this paper, we propose address this 
issue. First, the Dirichlet process is considered as a prior on P (the true/sampling 
distribution). Then the concentration of the distribution of the KL divergence 
between the prior and the model of interest is compared to that between the pos-
terior and the model. If the posterior is more concentrated about the model than 
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the prior, then this is evidence in favor of the model and if the posterior is less 
concentrated, then this is evidence against the model. The comparison is made 
via a relative belief ratio about 0 (Evans 2015), which gives the evidence in the 
observed data for or against the model. Additionally, a measure of the strength of 
this evidence is also provided. So the methodology is based on a direct measure 
of statistical evidence. Implementing the approach is direct and does not require 
obtaining a closed form of the relative belief ratio. In addition, the methodology 
does not require the use of a prior on � and so is truly a check on the model itself 
avoiding any issues with the prior on �.

This paper is organized as follows. In Sects. 2 and 3, the relative belief ratio and 
the Dirichlet process are briefly reviewed, respectively. In Sect. 4, the Kullback–Lei-
bler divergence between probability measures is discussed. In particular, a sample 
formula for computing the KL divergence between continuous distributions based 
on the Dirichlet process is developed. Section 5 discusses the proposed approach for 
model checking, where it is argued that a particular choice of the Kullback–Leibler 
divergence and the Dirichlet process should be employed. In Sect.  6, a computa-
tional algorithm for the implementation of the approach is outlined. Section 7 pre-
sents a number of examples where the behavior of the methodology is examined in 
some detail. Section 8 ends with a brief summary of the results.

2  Relative belief ratios

Consider {f� ∶ � ∈ Θ} to be a collection of densities on a sample space X  
and let � be a prior on Θ. Given the data x, the posterior distribution of � is 
�(� | x) = �(�)f�(x)∕ ∫Θ �(�)f�(x) d� . Let � = Ψ(�) be the parameter of inter-
est. Then the prior and posterior densities of � are denoted by �Ψ and �Ψ(⋅ | x), 
respectively. The relative belief ratio (Evans 2015) for a value � is then defined 
as RBΨ(� | x) = lim�→0 ΠΨ(N�(� )| x)∕ΠΨ(N�(� )) , where N�(� ) is a sequence 
of neighbourhoods of � converging nicely (see, for example, Rudin 1974) to � as 
� → 0. More commonly,

is the ratio of the posterior density to the prior density at � . That is, RBΨ(� | x) 
is measuring how beliefs have changed that � is the true value from a priori to a 
posteriori. Note that, a relative belief ratio is similar to a Bayes factor, as both are 
measures of evidence, but the latter measures this via the change in an odds ratio. A 
discussion about the relationship between relative belief ratios and Bayes factors is 
detailed in Baskurt and Evans (2013). In particular, when a Bayes factor is defined 
via a limit in the continuous case, the limiting value is the corresponding relative 
belief ratio.

By a basic principle of evidence, RBΨ(𝜓 | x) > 1 implies that the probability of � 
being correct increases after observing the data, and so there is evidence in favour 
of � . Else if RBΨ(𝜓 | x) < 1 then the data claims evidence of the � being incorrect 

(1)RBΨ(� | x) = �Ψ(� | x)∕�Ψ(�),
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and thus evidence of against � . Also if the RBΨ(� | x) = 1 , then there is no evidence 
either way.

Therefore, the RBΨ(�0 | x) measures the evidence of the hypothesis 
H0 = {� ∶ Ψ(�) = �0}. It is critical to rectify the degree of strength and weakness of 
this value. One of nicer calibration of the RBΨ(�0 | x) is suggested in Evans (2015), 
which considers the tail probability

(2) can be interpreted as the posterior probability that the true value of � has 
a relative belief ratio no greater than that of the hypothesized value �0. When 
RBΨ(𝜓0 | x) < 1, so there is evidence against �0, then a small value for (2) indicates 
a large posterior probability that the true value has a relative belief ratio greater than 
RBΨ(�0 | x) and so there is strong evidence against �0. When RBΨ(𝜓0 | x) > 1, so 
there is evidence in favor of �0, then a large value for (2) indicates a small posterior 
probability that the true value has a relative belief ratio greater than RBΨ(�0 | x)) and 
so there is strong evidence in favor of �0, while a small value of (2) only indicates 
weak evidence in favor of �0.

3  Dirichlet process

A relevant summary of the Dirichlet process is presented in this section. The Dir-
ichlet process, formally introduced in Ferguson (1973), is considered the most 
well-known and widely used prior in Bayesian nonparametric inference. Specif-
ically, consider � a space with a �−algebra A of subsets of � . Let G be a fixed 
probability measure on (�,A) , called the base measure, and a be a positive num-
ber, called the concentration parameter. Following Ferguson (1973), a random 
probability measure P = {P(A)}A∈A is called a Dirichlet process on (�,A) with 
parameters a and G, denoted by DP(a,  G), if for any finite measurable partition 
{A1,… ,Ak} of � with k ≥ 2,

(
P(A1),… P(Ak)

)
∼ Dirichlet(aG(A1),… , aG(Ak)) . 

It is assumed that if G(Aj) = 0 , then P(Aj) = 0 with a probability one. For 
any A ∈ A,P(A) ∼ Beta(aG(A), (1 − G(A)) and so E(P(A)) = G(A) and 
Var(P(A)) = G(A)(1 − G(A))∕(1 + a). Thus, G plays the role of the center of the pro-
cess, while a controls concentration, as, the larger value of a, the more likely that P 
will be close to G. Note that, for convenience, we do not distinguish between a prob-
ability measure and its cdf.

An important feature of the Dirichlet process is the conjugacy property. Specifi-
cally, if x = (x1,… , xn) is a sample from P ∼ DP(a,G) , then the posterior distribu-
tion of P is P | x = Px ∼ DP(a + n,Gx) where

with Fn = n−1
∑n

i=1
�xi and �xi the Dirac measure at xi. Notice that Gx is a convex 

combination of the prior base distribution and the empirical distribution. Clearly, 
Gx → G as a → ∞ while Gx → Fn as a → 0 . We refer the reader to Al-Labadi and 

(2)ΠΨ(RBΨ(� | x) ≤ RBΨ(�0 | x) | x).

(3)Gx = a(a + n)−1G + n(a + n)−1Fn,
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Zarepour (2013a, b, 2014a, 2017) for other interesting asymptotic properties of the 
Dirichlet process.

Following Ferguson (1973), P ∼ DP(a,G) has the following series representation

where Γi = E1 +⋯ + Ei,Ei

i.i.d.
∼ exponential(1), Yi

i.i.d.
∼ G independ-

ent of Γi, L(x) = a ∫ ∞

x
t−1e−tdt, x > 0, L−1(y) = inf{x > 0 ∶ L(x) ≥ y} and 

Ji = L−1(Γi)∕
∑∞

i=1
L−1(Γi) . It follows clearly from (4) that a realization of the 

Dirichlet process is a discrete probability measure. This is correct even when G is 
absolutely continuous. Note that, one could resemble the discreteness of P with the 
discreteness of Fn . Since data is always measured to finite accuracy, the true distri-
bution being sampled from is discrete. This makes the discreteness property of P 
with no practical significant limitation. Indeed, by imposing the weak topology, the 
support for the Dirichlet process is quite large. Precisely, the support for the Dir-
ichlet process is the set of all probability measures whose support is contained in 
the support of the base measure. This means if the support of the base measure is � , 
then the space of all probability measures on � is the support of the Dirichlet pro-
cess. For instance, if G is the standard normal, then the Dirichlet process can choose 
any probability measure.

Recognizing that no closed form available for the inverse of Lévy measure L(x), 
Sethuraman (1994) introduced the stick-breaking approach to define the Dirichlet 
Process. Specifically, let (�i)i≥1 be a sequence of i.i.d. random variables with a 
Beta(1, �) distribution. In (4), set

and (Yi)i≥1 independent of (�i)i≥1 . Unlike Ferguson’s approach, the stick-breaking 
construction does not need normalization. By truncating the higher order terms in 
the sum to simulate Dirichlet process, we can approximate the Sethuraman stick 
breaking representation by

In here, (�i)i≥1, (Ji,N)i≥1 , and (Yi)i≥1 are as defined in (5) with �N = 1 . The assumption 
that �N = 1 is necessary to make the weights add to 1, almost surely (Ishwaran and 
James 2001).

The Dirichlet process can also be obtained from the following finite mixture mod-
els developed by Ishwaran and Zarepour (2002). Let PN has the from given in (4) 
with (J1,N ,… , JN,N) ∼Dirichlet(a∕N,… , a∕N) . Then EPN

(g) → EP(g) in distribution 
as N → ∞ , for any measurable function g ∶ ℝ → ℝ with ∫

ℝ
|g(x)|H(dx) < ∞ and 

P ∼ DP(a,G) . In particular, (PN)N≥1 converges in distribution to P, where PN and P 
are random values in the space M1(ℝ) of probability measures on ℝ endowed with 

(4)P =

∞∑
i=1

Ji�Yi ,

(5)J1 = �1, Ji = �i

i−1∏
k=1

(1 − �k), i ≥ 2.

(6)PN =

N∑
i=1

Ji,N�Yi(⋅).
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the topology of weak convergence. To generate (Ji,N)1≤i≤N put Ji,N = Gi,N∕
∑N

i=1
Gi,N , 

where (Gi,N)1≤i≤N is a sequence of i.i.d. gamma(a/N, 1) random variables independent 
of (Yi)1≤i≤N.

For other simulation methods for the Dirichlet process, see Bondesson (1982), 
Wolpert and Ickstadt (1998), Zarepour and Al-Labadi (2012), Al-Labadi and Zarepour 
(2014b).

4  Kullback–Leibler divergence

Let F and F1 be two continuous cdf’s with corresponding probability density functions 
(pdf’s) f and f1 (with respect to Lebesgue measure). Then Kullback–Leibler divergence 
or the Relative Entropy between F and F1 is defined as

where

is the entropy of F (Shannon 1948). It is well-know that dKL(F,F1) ≥ 0 and the 
equality holds if and only if f = f1 . This property makes it suitable for model check-
ing problems. Note that, the KL divergence is not a distance as it is not symmetric 
and does not satisfy the triangle inequality (Cover and Thomas 1991).

From practical viewpoint, one must estimate (7) from the data x = (x1,… , xn) . In 
particular, estimating (8) is not a trivial task. Several frequentist estimators of (8) are 
offered in the literature. Vasicek (1976) noticed that (8) can be written as

If x = (x1,… , xn) is a sample from a distribution F, then, at each sample point xi , the 
derivative of F−1(t) is estimated by the slope defined by

where Fn is the empirical distribution function. Consequently, Vasicek (1976) esti-
mator is given by

(7)
dKL(F,F1) =∫

∞

−∞

f (x) log
(
f (x)∕f1(x)

)
dx

= − H(F) − ∫
∞

−∞

f (x) log f1(x)dx,

(8)H(F) = −∫
∞

−∞

f (x) log f (x)dx = −EF

[
log f (x)

]

H(F) = −∫
1

0

log
(
d

dt
F−1(t)

)
dt.

(9)
x(i+m) − x(i−m)

Fn(x(i+m)) − Fn(x(i−m))
=

x(i+m) − x(i−m)
i+m

n
−

i−m

n

=
x(i+m) − x(i−m)

2m∕n
,

(10)HV
m,n

= n−1
n∑
i=1

log

(
x(i+m) − x(i−m)

2m∕n

)
,
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where m, called the window size, is a positive integer smaller than n/2 and 
x(1) ≤ x(2) ≤ ⋯ ≤ x(n) are the order statistics of x1, x2,… , xn with x(i) = x(1) if 
i < 1, x(i) = x(n) if i > n . Vasicek (1976) showed that HV

m,n

p
→ H(F) , where p→ denotes 

convergence in probability. Ebrahimi et al. (1994) noticed that (10) is not accurate 
when i ≤ m or i ≥ n − m + 1 . They proposed the following revised version of (10):

where

They showed that HEPS
m,N

p
→ H(F) . For other nonparametric frequentist estima-

tors of entropy consult, among others, the work of van Es (1992), Correa (1995), 
Wieczorkowski and Grzegorzewski (1999), Alizadeh Noughabi (2010), Alizadeh 
Noughabi and Arghami (2010), Bouzebda et al. (2013) and Al-Omari (2014), Al-
Omari (2016). On the other hand, Bayesian estimation of entropy has received small 
consideration. Al-Labadi et al. (2018) derived the following Bayesian nonparametric 
estimator to entropy by using the Dirichlet process and adapting the estimators (10) 
and (11). Specifically, let PN =

∑N

i=1
Ji,N�Yi as defined in (6). Let m be a positive inte-

ger smaller than N∕2,Y(i) = Y(1) if i < 1, Y(i) = Y(N) if i > N, Y(1) ≤ Y(2) ≤ ⋯ ≤ Y(N) 
are the order statistics of Y1, Y2,… , YN and

where

Then, as N → ∞,m → ∞,m∕N → 0 and a → ∞,Hm,N,a

p
→ H(F).

5  Model checking using relative belief

Let 
{
F� ∶ � ∈ Θ

}
 denote the collection of continuous cdf’s for the model. Sup-

pose that x = (x1,… , xn) is a sample from a distribution F. The goal is to test 
the hypothesis H0 ∶ F ∈

{
F� ∶ � ∈ Θ

}
 . Let the prior on F be DP(a, G) for some 

choice of a and G. Then, by (3), the posterior distribution is F | x ∼ DP
(
a + n,Gx

)
 . 

(11)HEPS
m,n

= n−1
n∑
i=1

log

(
x(i+m) − x(i−m)

cim∕n

)
,

(12)ci =

⎧
⎪⎨⎪⎩

m+i−1

m
1 ≤ i ≤ m

2 m + 1 ≤ i ≤ N − m
N+m−i

m
N − m + 1 ≤ i ≤ N

.

(13)Hm,N,a =

N∑
i=1

Ji,N log

(
Y(i+m) − Y(i−m)

ci,a

)
,

ci,a =

⎧⎪⎨⎪⎩

∑i+m

k=2
Jk,N 1 ≤ i ≤ m∑i+m

k=i−m+1
Jk,N m + 1 ≤ i ≤ N − m∑N

k=i−m+1
Jk,N N − m + 1 ≤ i ≤ N

.
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As pointed out in the introduction, if H0 is true, then the posterior distribution of 
the divergence between F and 

{
F� ∶ � ∈ Θ

}
 should be more concentrated about 0 

than the prior distribution of this divergence. So this test will involve a compari-
son of the concentrations of the prior and posterior distributions of dKL about 0 
via a relative belief ratio with the interpretation as discussed in Sect. 2. A simple 
formula for computing the KL divergence between continuous distributions F and 
G is offered in Lemma 2. First we introduce the following result which plays a 
central rule in the proof Lemma 2.

Proposition 1 Let PN =
∑N

i=1
Ji,N�Yi as defined in (6), where Y1, Y2,… , YN

i.i.d.
∼ G . As 

N → ∞,

where a.s.→ denotes convergence almost surely and Ji is the weight that correspond to 
Yi.

Proof Note that, since (Ji,N)1≤i≤N are not independent, the standard strong law of large 
numbers cannot be applied. Instead, as described in Sect. 2, Ji,N = Gi,N∕

∑N

i=1
Gi,N , 

where (Gi,N)1≤i≤N is a sequence of i.i.d. gamma(a/N, 1) random variables independ-
ent of (Yi)1≤i≤N.

Now, by the strong law of large numbers and the independence between Gi,N and Yi , 
we have

and

It follows by the continuous mapping theorem that

N∑
i=1

Ji,N log
{
g(Yi)

} a.s.
→ E

[
log

{
g(Yi)

}]
=

∞∑
i=1

Ji log
(
g(Yi)

)
,

N�
i=1

Ji,N log
�
g(Yi)

�
=

N�
i=1

Gi,N∑N

i=1
Gi,N ,

log
�
g(Yi)

�

=

∑N

i=1
Gi,N log

�
g(Yi)

�
∑N

i=1
Gi,N ,

=

1

N

∑N

i=1
NGi,N log

�
g(Yi)

�
1

N

∑N

i=1
NGi,N

.

1

N

N∑
i=1

NGi,N log
{
g(Yi)

} a.s.
→ E

[
NG1,N

]
E
[
log

{
g(Y1)

}]
= aE

[
log

{
g(Y1)

}]

1

N

N∑
i=1

NGi,N ,
a.s.
→ E

[
NG1,N

]
= a.
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  ◻

An estimator of the KL divergence between F and G is given in the following 
lemma.

Lemma 2 Let Hm,N,a be as defined in (13). Then, as N → ∞,m → ∞,m∕N → 0 and 
a → ∞,

Proof By Lemma 2 of Al-Labadi et  al. (2018), (13)= −Hm,N,a

p
→ −H(F) , where 

H(F) is the entropy of F. The result follows by Proposition 1 and the continuous 
mapping theorem.   ◻

Still, to use the estimator given in Lemma 2, it is necessary to discuss appropriate 
values for m, a and G.

5.1  Measuring the divergence

Similar to Al-Labadi and Evans (2018), we compute dKL(F,F�(x)) , where 
F�(x) ∈

{
F� ∶ � ∈ Θ

}
 is the distribution that is best supported by the data. Since 

the evidence is being measured via relative belief ratios, �(x) is the relative belief 
estimate of �, which for the full model parameter is always the same as the maxi-
mum likelihood estimate (MLE). As such, the value �(x) is completely independent 
of any prior placed on �. Certainly this choice has some asymptotic justification as, 
under reasonable conditions, �(x) will converge to the best choice (in terms of Kull-
back–Leibler divergence) of � even when the model fails.

5.2  The choice of m

The value of m is required to compute (13). However, the ideal value m is still an 
open problem. As discussed in Vasicek (1976), with increasing N, the best value of 
m increases while the ratio m/N tends to zero. Grzegorzewski and Wieczorkowski 
(1999) proposed the following formula for optimal values of m

N∑
i=1

Ji,N log
{
g(Yi)

} a.s
→

aE
[
log

{
g(Y1)

}]
a

= E
[
log

{
g(Y1)

}]
=

∞∑
i=1

Ji log
(
g(Yi)

)
.

d̂KL(F,G) = − Hm,N,a −

N∑
i=1

Ji,N log
(
g(Yi)

)

= −

N∑
i=1

Ji,N log

{(
Y(i+m) − Y(i−m)

)
g
(
Yi
)

2mci,a

}

p
→ dKL(F,G).

(14)m = ⌊
√
N + 0.5⌋,
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where ⌊y⌋ is the largest integer less than or equal to y. Thus, for instance, by (14), if 
N = 50 , the best choices of m is 7. In this paper, we will use the rule (14). Note that, 
the value of m in (14) is the value that will be used for the prior. For the posterior, N 
will be replaced by the number of distinct atoms in PN| x , an approximation of F|x. 
It follows from (3) that if a/n is close to zero, then the number of distinct atoms in 
PN| x will typically be n, the sample size.

5.3  The choice of G

Following Al-Labadi and Evans (2018), we set G = F�(x) . That is, 
F ∼ DP

(
a,F�(x)

)
 ). There are many benefits of this choice of G. First, it avoids 

prior-data conflict (Evans and Moshonov 2006; Al-Labadi and Evans 2017) as 
the existence of prior-data conflict may lead to the failure having an apprecia-
ble concentration of the posterior distribution of dKL

(
F,F�(x)

)
 about zero, even 

when H0 is true (Al-Labadi and Evans 2018). On the other hand, setting G = F�(x) 
would appear to induce a data dependent prior distribution for dKL . The following 
lemma implies that this is not the case and so, with this choice, the approach is 
prior distribution-free.

Lemma 3 If F ∼ DP(a,F�(x)) , then the distribution of dKL(F,F�(x)) does not depend 
on F�(x).

Proof By Lemma 2,

Note that, as m → ∞ such that m∕N → 0 , we have

where f�(x) is the pdf of F�(x) . Also, since (Yi)i≥1 is a sequence of i.i.d. random vari-
ables with continuous distribution F�(x), for i ≥ 1, we have Ui

d
= F�(x)(Yi) , where (

Ui

)
i≥1 is a sequence of i.i.d. random variables with a uniform distribution on [0, 1]. 

Thus,

Now, as N → ∞,m → ∞,m∕N → 0 , by Lemma 2, we conclude that the distribution 
of dKL(F,F�(x)) does not depend on F�(x) .   ◻

d̂KL(F,F�(x)) = −

N∑
i=1

Ji,N log

(
1

ci,a

Y(i+m) − Y(i−m)

F�(x)

(
Y(i+m)

)
− F�(x)

(
Y(i−m)

)

×
[
F�(x)

(
Y(i+m)

)
− F�(x)

(
Y(i−m)

)]
f�(x)(Yi)

)

(15)
Y(i+m) − Y(i−m)

F�(x)

(
Y(i+m)

)
− F�(x)

(
Y(i−m)

) =
1

f�(x)(Yi)
,

(16)d̂KL(F,F�(x))
d
= −

N∑
i=1

Ji,N log

(
U(i+m) − U(i−m)

ci,a

)
.
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Note that, similar to Noughabi and Arghami (2013), if G(y) = y + b,G(y) = ay or 
G(y) = ay + b , which involve the case of location, scale and location-scale families, 
then (15) holds without any condition.

The following result shows that the posterior distribution of dKL
(
F,F�(x)

)
 

becomes concentrated around 0 as sample size increases if and only if H0 is true. 
The proof follows straightforwardly from the properties of the KL divergence and 
(3). Thus it is omitted.

Lemma 4 Let x = (x1,… , xn) ∼ F , where F ∼ DP(a,F�(x)) . Suppose that 
�(x)

a.s.
→ �0, supy |F�(x)(y) − F�0

(y)| a.s.
→ 0 as n → ∞.

 (i) If H0 is true, then, as n → ∞, dKL(F|x,F�(x))
a.s.
→ 0.

 (ii) If H0 is false, then, as n → ∞, lim inf dKL(F|x,F𝜃(x))
a.s.

> 0.

5.4  The choice of a

The selection of a is very important. In principle, larger values of a must be chosen 
to detect smaller deviations. Therefore, it is possible to consider several values of 
a. For example, one may start with a = 1 . If, as the value of a is increased, the cor-
responding relative belief ratio drops rapidly below 1, then this is a clear indication 
against H0 . As will be seen in the examples, when the null hypothesis is correct, 
the relative belief ratio always remains above 1 when larger values of a are consid-
ered. On the other hand, if the relative belief ratio is below than 1 and, as the value 
of a is increased (i.e., using a more concentrated prior), the corresponding relative 
belief ratio increases above 1, then this is a good indication in favour of H0 . It is 
highly recommended to choose a ≤ 0.5n , however, otherwise the prior may become 
too influential. See Al-Labadi and Zarepour (2017) for the justification of this rec-
ommendation. It is noticed that, for most purposes, setting a between 1 and 10 is 
found satisfactory. This choice of a is also recommended by Holmes et al. (2015) 
when using the Pólya tree prior for the two-sample problem. This issue is further 
discussed in Table 1 of Sect. 7.

The following result is useful in the elicitation process of a.

Lemma 5 If F ∼ DP(a,F�(x)), then

where �(x) = Γ�(x)∕ Γ(x) is the digamma function.

(17)

E
[
d̂KL(F,F�(x))

]
=
2

N

m∑
i=1

[
�

(
a(m + i − 1)

N
+ 1

)
− �(m + i − 1)

]

+
N − 2m

N

(
�
(
2am

N
+ 1

)
− �(2m)

)

+ �(N + 1) − �(a + 1),
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Proof By (16) and independence,

Since U(i) = U(1) for i < 1 and U(i) = U(N) for i > N and using the well-known fact 
that U(s) − U(r) ∼ Beta(s − r,N − s + r + 1) we have:

(18)

E
[
d̂KL(F,F�(x))

]
= −

N∑
i=1

E
[
Ji,N

]
E
[
log

(
U(i+m) − U(i−m)

)]

+

N∑
i=1

E
[
Ji,N log ci,a

]
.

(19)

N∑
i=1

E
[
log(y(i+m) − y(i−m))

]

=

m∑
i=1

E
[
log(U(i+m) − U(i−m))

]

+

N−m∑
i=m+1

E
[
log(U(i+m) − U(1))

]
+

N∑
N−m+1

E
[
log(U(N) − U(i−m))

]

= (N − 2m)(�(2m) − �(N + 1)) + 2

m∑
i=1

(�(i + m − 1) − �(N + 1))

= (N − 2m)�(2m) − N�(N + 1) + 2

m∑
i=1

�(i + m − 1).

Table 1  Relative belief ratios 
and strengths for testing the 
location normal model with 
various alternatives and choices 
of a in Example 1

Ftrue a d
0.05

(pr) RB Strength

N(0, 1) 1 0.5689 20 1
5 0.1441 13.2041 0.3395
10 0.0546 4.4124 0.7780

N(10, 1) 1 0.5690 20 1
5 0.1440684 13.2041 0.3394
10 0.0546 4.4124 0.7779

N(0, 4) 1 0.5512 0.8221 0.1355
5 0.1283 0.03988 0.0015
10 0.0494 0.0300 0.0000

0.5N(−2, 1) + 0.5N(2, 1)1 0.5440 0.3878 0
5 0.1286 0 0
10 0.0548 0 0

t
0.5

1 0.570 0 0
5 0.1331 0 0
10 0.0569 0 0

t
3

1 0.5485 4.6007 0.9980
5 0.1284 0.8618 0.3577
10 0.0511 0.8819 0.5147
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On the other hand,

From the proof of Lemma 1 of Al-Labadi et  al. (2018) and using the facts that 
�(x + 1) = �(x) + 1∕x (Abramowitz and Stegun 1972), we have

and

Substitute (19), (20), (21) and (22) in (18), we get the result.   ◻

6  Computational algorithm

To use (1), closed forms of the prior and posterior densities of D = dKL(F,F�(x)) 
are required, which is typically not available. Consequently, the relative belief ratio 
needs to be approximated via simulation. A particular attention here should be given 
to the case when both �D(0 | x) and �D(0) are close to 0. In such a case, determining 

(20)

N∑
i=1

E
[
Ji,N log ci,a

]

=

m∑
i=1

E

[
Ji,N log

(
i+m∑
k=2

Jk,N

)]

(21)+

N−m∑
i=m+1

E

[
Ji,N log

(
i+m∑

k=i−m+1

Jk,N

)]

(22)+

N∑
i=N−m+1

E

[
Ji,N log

(
N∑

k=i−m+1

Jk,N

)]
.

(20) =
1

N

m∑
i=1

�

(
a(m + i − 1)

N
+ 1

)
−

m

N
�(a + 1),

(21) =
1

N

N−m∑
i=m+1

�
(
2am

N
+ 1

)
−

N − 2m

N
�(a + 1)

=
N − 2m

N
�
(
2am

N
+ 1

)
−

N − 2m

N
�(a + 1)

(22) =
1

N

N∑
i=N−m+1

�

(
a(N + m − i)

N
+ 1

)
−

m

N
�(a + 1)

=
1

N

m∑
i=1

�

(
a(m + i − 1)

N
+ 1

)
−

m

N
�(a + 1).
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RBD(0 | x) is challenging. However, as discussed in Sect. 2, the formal definition of 
RBD(0 | x) is given as a limit and this limit can be approximated by RBD([0, d∗) | x) , 
the ratio of the posterior to prior probability that 0 ≤ D ≤ d∗, for a suitably small 
value of d∗.

We adapt the procedure outlined in Al-Labadi and Evans (2018). This approach 
is based on M quantiles of the prior distribution of D,   namely, the i-th interval is 
[di∕M(pr), d(i+1)∕M(pr)) where di∕M(pr) is the (i/M)-th quantile for i = 0,… ,M. Note 
that values in the left tail of this distribution correspond to those F,  in the popula-
tion of distributions, that, according to the prior at least, do not differ materially 
from 0. As such we will consider the left-tail quantile of this prior distribution, such 
as the 0.05-quantile or the 0.01-quantile, so d∗ = di0∕M(pr) where i0∕M ≈ 0.05 or 
i0∕M ≈ 0.01.

The following gives a computational algorithm for assessing H0.
Algorithm A (Relative belief algorithm for model checking):

 (i) Generate a sample from PN , where PN is an approximation of F ∼ DP(a,F�(x)) . 
See Sect. 3.

 (ii) Compute d(pr) = d̂KL(PN ,F�(x)) as described in Lemma 2.
 (iii) Repeat steps (i) and (ii) to obtain a sample of r1 values from the prior of D.
 (iv) Generate a sample from PN|x , where PN|x an approximation of 

F|x ∼ DP(a + n,Gx).
 (v) Compute d(po) = d̂KL(PN|x,F�(x)) as described in Lemma 2.
 (vi) Repeat steps (iv)-(v) to obtain a sample of r2 values from the posterior of D.
 (vii) For a fixed positive number M, let F̂D denote the empirical cdf of D based on 

the prior sample in (iii) and for i = 0,… ,M, let d̂i∕M(pr) be the estimate of 
di∕M(pr), the (i/M)-th prior quantile of D. Here d̂0(pr) = 0 , and d̂1(pr) is the 
largest value of d(pr). Let F̂D(⋅ | x) denote the empirical cdf of D based on the 
posterior sample of d(po) in (vi). For d ∈ [d̂i∕M(pr), d̂(i+1)∕M(pr)) , estimate 
RBD(d | x) by the ratio of the estimates of the posterior and prior contents of 
[d̂i∕M(pr), d̂(i+1)∕M(pr)). Specifically, 

 Moreover, estimate RBD(0 | x) by R̂BD(0 | x) = MF̂D(d̂i0∕M(pr) | x) where i0 is 
chosen so that i0∕M is not too small (typically i0∕M ≈ 0.05).

 (viii) Estimate the strength DPD(RBD(d | x) ≤ RBD(0 | x) | x) by the finite sum 

 For fixed M,  as r1 → ∞, r2 → ∞, then d̂i∕M(pr) converges almost surely to 
di∕M(pr) , (23) converge almost surely to RBD(d | x) and (24) converge almost 
surely to DPD(RBD(d | x) ≤ RBD(0 | x) | x) (Al-Labadi and Evans 2018).

(23)R̂BD(d | x) = M{F̂D(d̂(i+1)∕M(pr) | x) − F̂D(d̂i∕M(pr) | x)},

(24)
∑

{i≥i0∶R̂BD(d̂i∕M(pr) | x)≤R̂BD(0 | x)}
(F̂D(d̂(i+1)∕M(pr) | x) − F̂D(d̂i∕M(pr) | x)).
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7  Examples

In this section, the approach is illustrated through three examples. In all the 
examples, the prior was taken to be DP

(
a,F�(x)

)
 and, in Algorithm A, we set 

r1 = r2 = 2000,N = 200,M = 20 and i0 = 1 . A critical factor here for success are 
the choices of a as the prior has to be sufficiently concentrated about the family. The 
sensitivity to the choice of a is investigated and we record only a few values in the 
tables.

Example 1 Location normal model.
In this example, samples of n = 20 was generated from the distribution Ftrue in 

Table  1. Then the methodology was applied to assess whether or not the correct 
model is {F� ∶ � ∈ Θ} = {N(�, 1) ∶ � ∈ ℝ} and so 𝜃(x) = x̄. Thus, by Lemma 2,

where

It follow that

In Table  1 the relative belief ratios and the strengths are recorded for testing the 
location normal model against a variety of alternatives with two choices of the 
hyperparameter a and m. Recalling that we want RB > 1 and the strength close to 1 
when H0 is true and RB < 1 and the strength close to 0 when H0 is false, it is seen 
that the methodology using dKL(F,F�(x)) performs well in every instance.

Example 2 The Gumbel Model.
In this example, we consider the Gumbel model. This model is commonly used in 

environmental sciences, hydrology in the modeling of heavy rain, floods and indus-
trial applications. A random variable Y is said to have the Gumbel distribution if its 
probability density function has the form

Here � represents the location parameter and � represents the scale parameter. The 
following dataset gives the annual maxima of daily rainfall (in mm) during the 
period 1967–2001 recorded at the Álamo, Veracruz, meteorological station, México 

d̂KL(F,F�(x)) = − Hm,N,a −

N∑
i=1

Ji,N log
(
f�(x)(Yi)

)
,

f𝜃(x)(Yi) =
1√
2𝜋

e
−

1

2
(Yi−x̄)

2

.

�dKL(F,F𝜃(x)) = − Hm,N,a +
1

2
log(2𝜋) +

1

2

N∑
i=1

Ji,N
(
Yi − x̄

)2
.

f (y;𝜉, 𝛽) =
1

𝛽
exp

{
−
y − 𝜉

𝛽
− exp

(
−
y − 𝜉

𝛽

)}
, y, 𝜉 ∈ ℝ, 𝛽 > 0.
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maximum flood levels of the Susquehanna River at Harrisburg, Pennsylvania, over 
four-year periods (1890–1969) in millions of cubic feet per second.

86.8, 78.5, 93.1, 95.5, 78.1, 89.9, 109.5, 161.6, 187.6, 89.9, 73.4, 78.1, 73.3, 130.1,

188.3, 113.9, 42.5, 80.0, 142.6, 42.9, 60.2, 100.0, 129.0, 98.0, 116.4, 37.9, 60.7,

48.7, 39.7, 80.3, 30.7, 120.0, 160.0, 64.3, 80.0

According to Pérez-Rodríguez et al. (2009), the maximum likelihood estimators 
for � and � are 74.5432 and 32.4328, respectively. The goal is to test whether the 
underlying distribution is a Gumbel distribution. The results in Table 2 indicate that 
indeed the data can be considered as coming from a Gumbel distribution as there 
is evidence in favor of this model. See also Sect. 5 of Pérez-Rodríguez et al. (2009, 
Sect. 5) for similar results.

Example 3 Lifetimes of Kevlar pressure vessels.
Consider the data of 100 stress-rupture lifetimes of Kevlar pressure vessels pre-

sented in Andrews and Herzberg (1985). The goal is to test whether the underlying dis-
tribution is normal. That is, {F� ∶ � ∈ Θ} = {N(�, �2) ∶ � = (�, �2) ∈ ℝ × (0,∞)} 
and so 𝜃(x) = (x̄,

∑n

i=1
(x − x̄)2∕n). For this data set, �(x) = (209.171, 37606.56) . Pre-

vious studies such as Evans and Swartz (1994), Verdinelli and Wasserman (1998) 
and Al-Labadi and Evans (2018, Table 4) suggested that model is not correct. The 
results in Table 3 support the non-normality of this data set only when using a more 
concentrated prior.

8  Conclusions

A general procedure for model checking based on integrating the Dirichlet process, 
the Kullback–Leibler divergence and the relative belief ratio has been considered. 
Applying the approach is simple and does not require obtaining a closed form of 

Table 2  Relative belief ratios 
and strengths for testing the 
Gumbel model in Example 2

a 1 5 10 15 20
d
0.05

(pr) 0.5573 0.1209 0.0499 0.0306 0.0215
RB 20 13.2132 5.7211 3.7904 3.0154
Strength 1 1 1 1 1

Table 3  Relative belief ratios and strengths for testing the normality of the Kevlar data and various 
choices of a in Example 3

a 1 5 10 15 20 25 30
d
0.05

(pr) 0.5451 0.1194 0.0501 0.0316 0.0240 0.0146 0.0130
RB 17.65 1.8107 0.6847 0.4782 0.3915 0.1784 0.1697
Strength 1 0.7009 0.0342 0.7009 0.1037 0.0355 0.0089
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the relative belief ratio. Numerous examples are presented in which the proposed 
approach shows excellent performance.
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