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Introduction

“Heart attacks can give you mathematics.”

This quotation is the title of a public lecture on arrhythmia (or irregular heartbeats)
given by James Keener, a professor of mathematical biology at the University of Utah
[1]. While a few might say it should be written the other way around — mathemat-
ics can give you heart attacks — Prof. Keener suggests an intriguing yet interesting
concept: medical phenomena such as cardiovascular diseases can be studied and ad-
dressed with an unlikely weapon — math.

This essay aims to dispel these two misconceptions: that mathematics and medicine
are two disjoint fields, and that the medical industry does not employ math beyond
Calculus I, if not no math at all.1 Strap on your seat belts; you’re in for a wild ride.

1. Enzyme Kinetics

1.1. Reaction of Interest: Metabolism

Before we talk about different biochemical processes happening in our body, we might
as well delve deeper into what such a process looks like. Let’s take metabolism for exam-
ple. In its simplest sense, metabolism is the conversion of simple sugars to energy. We
all know that eating food provides us with energy, among other things, to help us make
it through our daily tasks. Producing energy (or adenosine triphosphate – ATP) is not a
simple one-step process. It involves three main steps, each being a series of chemical
reactions. Moreover, these individual reactions, although favoured to happen, take a
long time to complete (some in the order of 1013 seconds) [2]. If this is the case, then
why don’t we end up waiting a lifetime to gain energy?

The answer lies in complex molecules called enzymes. These act as catalysts: speeding
up the reaction by lowering the activation energy required for it to proceed. Think of the
activation energy as a hill: the steeper the hill, the harder it takes to reach the peak. Say
on a regular day, it takes five hours to bike to the peak. With enzymes (or, following the
analogy, with a motorcycle or a car), it takes less than an hour to do so. Of course, the
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magnitude of rate reduction is significantly greater with biological processes (typically
10−12 seconds [2] — almost instantaneous!), but the idea remains the same.

Now you might think, “Oh, since enzymes hasten the reaction of interest, having an infi-
nite amount of enzymes in my system would lead to infinite ATP! I’ll never be tired anymore!
I can pull all-nighters every night!” Not so fast. Unfortunately, there is a limit as to how
efficient an enzyme is in terms of speeding up the reaction. Moreover, there are other
factors to consider: are there any competing compounds in my system that can affect
enzyme efficiency? Would having a high concentration of reactants or products cause
my enzyme to break down and give up? Perhaps the real question is: is there a mathe-
matical model that can answer these questions for any biochemical reaction involving
enzymes?

1.2. Michaelis-Menten Equation

In 1913, Leonor Michaelis and Maud Menten2 wanted to quantitatively describe the
kinetics behind enzyme-catalysed reactions, such as metabolism. Normally, substrates
S are converted to products P by the following one-step equation [2]:

(1.2.1) S
k−→ P

In this case, the rate of appearance of P has a linear relationship with the amount of
reactants (here, [X] represents the concentration of chemical species X as a function of
time), with proportionality constant (or rate constant) k:

(1.2.2) d[P ]

dt
= k[S]

It would make sense to increase S in order to produce more P per unit time. More-
over, since (1.2.2) is linear, there is no upper bound involved; hence, on paper, it is pos-
sible to have significantly large reaction rates (tending to infinity) with large substrate
concentrations. However, we mentioned in Section 1.1 that there is no such thing as in-
finite energy, which then means that (1.2.2) does not apply to our biochemical reaction.

Instead, Michaelis and Menten set up the problem as follows. Metabolism — or any
biochemical reaction for that matter — is composed of a series of elementary reactions
like (1.2.1), as mentioned in Section 1.1. First, the substrate attaches itself to the enzyme
E at its active site, forming an enzyme-substrate complexES. This process is reversible:
since the reactants and products exist in equilibrium, the substrate is able to fall on and
off the enzyme freely, with corresponding rate constant k1 (for the forward reaction)
or k−1 (for the reverse reaction). Once on the enzyme active site, the substrate then
is converted to products: at this point, it is unfavoured for P to revert to S, nor is it
possible to form an EP complex. Hence, this second step is simply a forward reaction,
with its own rate constant k2. The new chemical equation is then [2]:

(1.2.3) S + E
k1


k−1

ES
k2−→ P + E

2She was a UofT alumna, earning her MD in 1911.
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Now, the rate of appearance or disappearance of each component with respect to time
can be determined from (1.2.3), as follows [3]:

d[S]

dt
= k−1[ES]− k1[S][E](1.2.4)

d[E]

dt
= k2[ES] + k−1[ES]− k1[S][E](1.2.5)

d[ES]

dt
= k1[S][E]− k2[ES]− k−1[ES](1.2.6)

d[P ]

dt
= k2[ES](1.2.7)

These four equations are derived in the same way as (1.2.2) — the change in con-
centration of each compound X is given by each equation in which it shows up; if X
is being produced in the reaction, then the rate component is positive, and if X is be-
ing consumed, then the rate component is negative. Take (1.2.4) for example: for the
forward reaction S + E → ES, S is being consumed, while for the reverse reaction
ES → S+E, S is produced, both with corresponding rate constants k1 and k−1. Hence,
the change in [S] is the sum of the contributions of these reactions: k−1[ES]− k1[S][E].
Note that we have to multiply both concentrations for the forward reaction since the
rate is linearly related to all reactants involved, as per (1.2.2).

Another interesting observation about these four equations is that (1.2.5) and (1.2.6),
when added, result to zero. This makes sense in terms of the biochemical reactions
since these describe the concentrations of the free unbounded enzyme and the enzyme-
substrate complex. Given a fixed amount of enzyme in the system Eo, a fraction of this
will be free enzymes ([E]), while the remaining fraction will be bounded with substrate
([ES]). Hence, the total enzyme concentration will remain constant throughout the
reaction, and can be written as follows:

(1.2.8) [Eo] = [E] + [ES]

Now, going back to the original question: we want to be able to obtain an equation
that describes the rate of appearance of P , using quantities that we can measure. In
this case, it would be beneficial to have (1.2.7) written in terms of [S] and [E], which are
our starting compounds. Because the reactions S + E → ES and ES → S + E are in
equilibrium, we can assume that [ES] does not change with time (or is in steady state);
hence:

(1.2.9) d[ES]

dt
= k1[S][E]− (k−1 + k2) [ES] = 0

Rewriting (1.2.9) in terms of (1.2.8) yields:

k1[S][E]− (k−1 + k2) [ES] = 0

k1[S] ([Eo]− [ES]) = (k−1 + k2) [ES]
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With some rearrangements and algebraic manipulation, we can obtain another ex-
pression for [ES]:

[ES] =
k1[S][Eo]

k−1 + k2 + k1[S]
=

[S][Eo]
k−1+k2
k1

+ [S]

The above expression can now be used to rewrite (1.2.7):

(1.2.10) d[P ]

dt
= k2

(
[S][Eo]

k−1−k2
k1

+ [S]

)

Finally, to have a more compact equation, we recall that d[P ]
dt

is the rate (or speed v) at
which the entire metabolism reaction — including the intermediate steps — produce
P . Moreover, if all of the enzyme present in the system is present as ES ([Eo] = [ES]),
then (1.2.7), being similar to (1.2.2), would reach its maximum rate as [Eo] is fixed.

Thus, the Michaelis-Menten equation is given as follows [2, 3]:

(1.2.11) v =
vmax[S]

Km + [S]
where v =

d[P ]

dt
, vmax = k2[Eo], Km =

k−1 + k2

k1

From (1.2.11), we can see that for small values of [S] (or when Km >>> [S]), the
rate of production follows a linear relationship with [S], just like in (1.2.2). However,
when substrate concentration is sufficiently large (i.e. Km <<< [S]), the infinite limit
of (1.2.11) would then tend to v = vmax. Thus, there is indeed an upper bound as to
how fast (and how much) P is produced, which relates to our earlier hypothesis that
we cannot have infinite energy from eating infinite amounts of food.

2. Matters of the Heart

2.1. ECG: Modelling Heartbeats

Figure 1. A normal scalar electrocardiogram reading [3].

When we talk about electrocardiograms (or ECGs), the first thing that comes to mind
is the zig-zag graph of a person’s heartbeat that shows up on a small screen. This graph
(call it a scalar ECG) is periodic3, with one cycle lasting about 300 milliseconds [3]. Po-
tential heart problems can be discovered on a patient with the aid of an ECG, such as

3Of course, if the patient is close to death, then it won’t be perfectly periodic. Beep beep beeeeeeeep.
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abnormalities in heart rhythm: irregularities in the periodicity of each heartbeat at a
certain time interval are possible signs of fibrillation (or arrhythmia), while significant
differences in amplitude are signs of tachycardia (rapid beating of the upper/lower
heart chambers) [3].

Although the scalar ECG is already helpful on its own, more information can be un-
earthed if we deal with the heart as a volume and not simply as a point. More impor-
tantly, it would be more advantageous health-wise if we can determine at which side
of the heart the irregularities occur, without being invasive. This is where vector ECGs
come in handy.

There are two unsolved problems in electrocardiography that are motivated by the
relationship between the heart (as an electric current source) and the body. The entire
body — including the heart — is electrically conductive on its entire surface, which
allows us to measure its potential differences or voltage (independent of direction) given
an applied external current (a vector). However, the most important current source
occurs in the heart at every heartbeat [3].4 Because current I is related to potential
gradient ∇φ as follows, with conductivity constant σ:

I = −σ (∇φ)

and current in the entire body is conserved, the sum of all current sources, S, can the
be written as the following Poisson equation5:
(2.1.1) S = ∇ · I = −∇ · [σ(∇φ)]

The first problem, called the forward problem of electrocardiography, seeks a way to de-
termine a solution to (2.1.1). Being able to find this solution φ, which gives the change
in potential in the body caused by heartbeats at any given time, requires the exact lo-
cation, direction, and strength of the current, as well as the conductivity of the entire
body, which varies depending on the type of tissue [4].

The other problem, called the inverse problem of electrocardiography, follows from the
previous problem by supposing that there already exists a solution for (2.1.1), which
we call the transfer function T . T yields the surface potential φB of the entire body at any
point in time:
(2.1.2) φB(t) = T · S(t)

By knowing the explicit equation for T , and using potentials measured in the body, all
current sources at play could then be obtained by inverting (2.1.2) [3]:

(2.1.3) S(t) = T−1 · φB(t)

At this point, since these problems are yet to be solved, we can simplify some parts
of the problem to have an adequate workable approximation. The easiest one is to take
surfaces or regions in the heart with different σ values and represent them altogether in

4Not a coincidence that this subsection is also at the heart of this essay.
5We need not know more about this equation (nor ∇) for this essay, though it wouldn’t hurt to learn

something new in our spare time.
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order to work with only one value. We call this value the heart dipole vector H: the sum
of the current dipoles6 experienced by the heart at every point (here, J is the current
dipole density at a given point of the heart, and V is heart volume) [3, 4]:

(2.1.4) H(t) =

∫
V

J dV

We then say that (2.1.4) is fixed in space: the value only changes in terms of orien-
tation and dipole strength; this allows us to take the dipole origin (or where we place
the arrow’s tail) to be the centre of the heart for convenience. Thus on the surface of the
body, assuming σ on the surface is the same as σ on the inside of the body at a particu-
lar point, the experienced potential that came solely from the heart can be written in a
similar form as (2.1.2):
(2.1.5) φB(x, t) = lx ·H(t)

wherein lx is the lead vector associated with the electrode attached to a part of the body
during ECG measurements [3]. Note that by taking the dot product of lx and H(t), we
are assured that φ describes the potential at a specific point x at a given time t.

Another simplification that we could make is to fix the number and locations of ECG
measurements in order to describe H accurately using (2.1.5). While there are 12 loca-
tions currently used, the first three were discovered by Willem Einthoven7 in 1913 [5].
He proposed that since H is a three-dimensional vector (corresponding to the heart as
a three-dimensional surface), three lead vectors are sufficient. Moreover, these vectors
form an equilateral triangle given by unit lead vectors lI = (1, 0, 0), lII = (1

2
,
√

3
2
, 0), and

lIII = lII − lI [3, 5].

Figure 2. The Einthoven triangle, showing the heart vector H and lead
vectorsLI ,LII , andLIII . φRA, φLA, andφLL denote the potential difference
in the right arm, left arm, and left leg, respectively [3].

6Think of this as an arrow – a visual representation of a vector.
7Known as “the father of electrocardiography”, he won the Nobel in physiology in 1924 [3].
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H can then be broken down into its projections on the sides of the equilateral triangle
(Figure 2), which are the lead vectors Einthoven mentioned (here, Li and li correspond
to the ith lead vector (or projection) and the ith unit vector (or triangle side), respec-
tively):

Li =

(
li ·H
‖li‖2

)
li = (li ·H) li since li is a unit vector, ‖li‖ = 1

Finally, in order to bridge the gap between measurable and computed quantities,
Einthoven defined the lengths of each lead vector to be the potential differences mea-
sured from both arms (RA and LA, for right and left) and the left leg (LA) during elec-
trocardiography:

VI = φLA − φRA = ‖LI‖(2.1.6)
VII = φLL − φRA = ‖LII‖(2.1.7)
VIII = φLL − φLA = ‖LIII‖(2.1.8)

Thus, H can be determined through the vector ECG given by (2.1.6) to (2.1.8). A
change in amplitude of part of the vector ECG would be caused by a change in either
amplitude or orientation of H. Moreover, the direction in which H shifts away from
corresponds to the side of the heart in which the irregularity lies, as in Figure 2 [5]. For
example, if H shifted towards LIII , then the lead vector contributed by RA is relatively
weak compared to LA and LL; this means that the right side of the heart experiences
dysfunction.

2.2. Arrhythmias

As mentioned in the introduction, arrhythmias are irregular heartbeats, or disruptions
of normal cardiac electrical cycle [3]. There are two types of arrhythmias: mild temporal
disruptions, and re-entrant arrhythmia — caused by spatial distribution and deforma-
tion of cardiac tissue, and thus can lead to serious health risks.

Re-entrant arrhythmias occur in an analogous way as the “wave” [3]: a stadium
crowd phenomenon wherein rows of spectators would suddenly rise from their seats,
wave their arms up and cheer, then sit down again. No one would dare attempt to do
the wave alone; there must always be a cheerleader or pep squad initiating this collec-
tive motion — an external stimulus. Moreover, the direction at which the wave travels,
despite the stadium housing a huge crowd, always ends up being unidirectional: even
though there is a possibility of the wave starting at two different points, the crowd
would find a way to adjust and return to only one starting point.

We can then describe re-entrant arrhythmias as being triggered by an initial stimulus,
occurring at a certain time and position in the heart such that there is non-symmetric
propagation and possibility of initiation back to the starting point [3]. While the medical
challenge would be modelling this accurately without the need for invasive techniques,
the mathematical challenge then would be creating a phase singularity that satisfies
these conditions.
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Suppose there is a one-dimensional closed pathway of length L (or our stadium in
this case), which allows only unidirectional flow (our wave), and is stimulated by a
pacemaker (our cheerleader). This pacemaker fires electric pulses at time t with pe-
riod T , and does so n + 1 times. Then the stimulus period for this pathway would
be ∆Tn+1 = tn+1− tn. If we take the speed of pulse propagation to be dependent on fre-
quency (i.e. speed = c(∆T )), then the travel time around the pathway would be L

c(∆T )
.

Moreover, even though there is a delay for cardiac cells (our spectators) to positively re-
spond between stimuli (call this the refractory period Tr), the time it takes for the pulse
to move completely around the pathway is shorter than T (i.e. time = L

c(∆T )
< T ).

If the pulse travels at a shorter time than Tr, then it will have no effect on the cardiac
cells, and thus cannot initiate arrhythmia. However, if its travel time is larger than Tr,
then it can travel around in a wave without any obstructions until it reaches the initial
point (same as the wave analogy earlier). Thus, the stimulus period can be written as:

(2.2.1) ∆Tn+1 = tn+1 − tn =

{
T, for L

c(∆Tn)
< Tr

L
c(∆Tn)

, for Tr < L
c(∆Tn)

< T

We can thus map ∆Tn 7→ ∆Tn+1 (Figure 3) and analyse its fixed points (where the
solid graphs intersect the dashed line), which represent a periodic stimulus [3]. In the
first case, wherein L is small and T is large, there are two fixed points corresponding
to each case in (2.2.1); this represents a healthy heart as this follows the normal pulse
movements. However, when T is sufficiently small as in the second case, there is only
one fixed point, which occurs on the graph corresponding to the re-entrant stimulus.
This then means that arrhythmia occurs when the difference between the pulse period
and refractory period is small: the path will experience continuous pulses at a quicker
pace, leading to irregularity in heartbeat.

Figure 3. Next-interval maps of stimulus frequency that correspond to
(2.2.1). The left graph illustrates normal conditions, while the right graph
shows signs of re-entrant arrhythmia [3].

Looking at this at a physiological perspective, an increase in L without change in T
could correspond to a growth in an already-existing diseased region in the heart. On
the other hand, T could decrease with fixed L during periods of strenuous activity like
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exercise; the heart itself does not grow in size permanently, but the greater need for
oxygen in the body requires it to pump more blood per unit time. Both of these cases
cause T to be relatively lower than L, which then leads to re-entrant arrhythmia.

3. Urine Analysis

3.1. Problem of Interest: Water and Solutes

We have been told at least once in our lives that we should drink plenty of water after
eating salty food in order to prevent kidney or bladder problems.8 But how much water
is plenty? Say, for an interesting and realistic word problem [3], that we consumed a 1.5-
ounce (or 42.5-gram) bag of potato chips. If salt is 58.5 grams per mole (or unit amount),
and it dissociates in water into 2 osmoles (or 2 salt molecules per litre), then how much
water9 should we drink in order to flush all the salt out of our body?

First, we need to find out exactly how much salt in moles (n) is in our potato chips:

n =
42.5 grams of chips

58.5 grams of salt per mole
≈ 0.7265 moles of salt

Then, since the body can concentrate a maximum of 1200 milli-osmoles (or 1.2 os-
moles) of solutes per litre of urine, we only need to find the minimum volume of urine
required to flush n moles out — exactly the same volume of water we need to drink:

V =
0.7265 moles of salt · 2 osmoles per mole of salt

1.2 osmoles/L
≈ 1.21 L

That was an easy calculation, although hard to do in reality. Perhaps the real question
is, how does the body concentrate all these unwanted solutes into urine without causing
complications?

3.2. The Loop of Henle: Natural Filter

The loop of Henle, located in our excretory system, serves as the main diluting and
concentrating site for unwanted excess solutes before its release as urine. Since our
body is composed of several fluids, all containing solutes that need to be removed, the
challenge is to be able to transfer as much solute into the loop of Henle as possible,
given biological and physical constraints. How can we model this?

To maintain a large concentration difference between the different fluids in the body
and urine, it is important to have a countercurrent mechanism that deals with the differ-
ent rates of solute diffusion between these two fluids [3]. Suppose concentration is a
function of space and time (i.e. C(x, t)), and we have two liquids with concentrations
C1 and C2 and initial concentrations Co

1 and Co
2 flowing into two tubes with length L

8That or limit our junk food intake, but do we really want to say goodbye to tasty unhealthy snacks?
9The easiest answer would be 8 glasses of water, but we’d like to know the bare minimum.
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separated by a permeable membrane. Then the concentrations in these tubes are given
by:

∂C1

∂t
+ q1

∂C1

∂x
= d(C2 − C1)(3.2.1)

∂C2

∂t
+ q2

∂C2

∂x
= d(C1 − C2)(3.2.2)

We assume that steady state exists between these two tubes (a similar assumption was
made in Chapter 1.2), so that the time derivative of both liquid concentrations is zero.
Thus, combining and integrating (3.2.1) and (3.2.2), we find that the sum of concentra-
tions, no matter which point in space, is constant alongL [3]. Thus, we can find an ODE
that describes the change of concentration (say C1) with respect to position:

(3.2.3) dC1

dx
=

d

q1q2

(k − (q1 + q2))C1)

and integrating this would give us:

(3.2.4) C1(x) =
k

q1 + q2

+ (Co
1)− k

q1 + q2

e−λx where λ = d

(
q1 + q2

q1q2

)
The same derivation can be made for C2. Thus, we can say that the output concen-

tration from liquid 1 is an exponentially decreasing function of position; the longer L
is, the harder it is for the solutes to become concentrated into the loop of Henle.

Conclusion

As we have seen, mathematics appears in different forms in different aspects of phys-
iology and medicine, with complexity ranging from simple ordinary differential equa-
tions to more complex systems. Moreover, these applications allow medical practition-
ers and researchers to come up with discoveries and draft hypotheses without requir-
ing numerous living test subjects, making it cost-efficient and ethical. So while the rest
of the world still look at mathematics as arrhythmia-inducing10, Prof. Keener is right:
arrhythmias — or biological processes in general — cause mathematics.
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