

Chemical & Physical Sciences UNIVERSITY OF TORONTO

MISSISSAUGA

Colloquium Seminar Series Wednesday, January 31, 2024 3:30 p.m. in CC3150

Prof. Molly Shoichet University Professor & Canada Research Chair Institute of Biomedical Engineering University of Toronto Turning Lemons into Lemonade: Affinity

Release Strategies for Therapeutic Delivery

Cor ach for enc nan and pro pro

Controlling protein release has typically been achieved by using strategies similar to those used for drug delivery; however, the method of encapsulation in biodegradable polymeric nanospheres is inherently limited in the amount bioavailability of the released and proteins. Typically, less than 0.1% by mass of protein is encapsulated and the exposure to shear and organic solvents impacts protein activity. While working in this area, we discovered encapsulation-free protein release – that is proteins do not have to be encapsulated, but rather their release can be controlled by electrostatic affinity interactions [1, 2]. The mechanism for this will be described as will the affinity release based on discrete protein-peptide binding partners.

For the latter, we express fusion proteins with Src homology 3 (SH3) and modify of hydrogel delivery vehicle with SH3-binding peptides, thereby controlling release of our protein of interest through the affinity of SH3 and its binding peptides [3]. More recently, we have advanced this to finding novel binding partners for each protein by manipulating yeast surface display [4]. We demonstrate the benefit of these methods in animal models of spinal cord injury, stroke and blindness.

References:

[1] Pakulska, M.M.; Elliott Donaghue, I.; Obermeyer, J.; Tuladhar, A.; McLaughlin, C.K.; Shoichet, M.S. 2016 "Encapsulation-free controlled release: electrostatic interactions eliminate the need for protein encapsulation in PLGA nanoparticles," Science Advances, 2, e1600519 doi:10.1126/sciadv.1600519

[2] Ho, E.; Deng, Y.; Akbar, D.; Da, K.; Létourneau, M.; Morshead, C.M.; Chatenet, D.; Shoichet, M.S. 2023 "Tunable surface charge enables the electrostatic adsorption-controlled release of neuroprotective peptides from a hydrogel-nanoparticle drug delivery system", ACS Applied Materials & Interfaces, 15: 91-105 doi: 10.1021/acsami.2c17631

[3] Pakulska M.M.; Miersch, S.; Shoichet, M.S. 2016 "Designer protein delivery: from natural occurring to engineered affinity controlled release systems," Science, 351(6279):aac4750; doi: 10.1126/science.aac4750

[4] Teal, C.J.; Hettiaratchi, M.H.; Ho, M.T.; Ortin-Martinez, A.; Ganesh, A.N.; Pickering, A.J.; Golinski, A.W.; Hackel, B.J.; Wallace, V.A.; Shoichet, M.S. 2022 "Directed evolution enables simultaneous controlled release of multiple therapeutic proteins from biopolymer-based hydrogels", Advanced Materials, e2202612: 1-14; doi: 10.1002/adma.202202612