Edraianthus \times lakusicii (Campanulaceae) a new intersectional natural hybrid: morphological and molecular evidence

Dmitar Lakušić • Tamara Rakić • Saša Stefanović •
Boštjan Surina • Vladimir Stevanović

Received: 21 November 2008/Accepted: 15 February 2009/Published online: 8 April 2009
© Springer-Verlag 2009

Abstract

The genus Edraianthus A.DC. has a center of distribution in the Balkans and it is one of the most prominent groups of endemic plants in this region. During our recent fieldtrip to Mt. Lovćen (Montenegro), putative hybrid individuals were encountered, morphologically intermediate between two sympatric taxa, E. tenuifolius (E. sect. Edraianthus) and E. wettsteinii subsp. lovcenicus (E. sect. Uniflori). Multivariate morphometric and molecular analyses were carried out to investigate the occurrence of hybridization between these two species. As a result, a new nothospecies is described here, Edraianthus \times lakusicii V. Stevanović \& D. Lakušić, a natural hybrid between E. tenuifolius and E. wettsteinii subsp. lovcenicus. At present, this hybrid is known only from the single locality of Mt. Lovćen. Its population size is estimated to be <50 mature

[^0]individuals and the estimated "area of occupancy" is smaller than $1 \mathrm{~km}^{2}$.

Keywords Edraianthus • Campanulaceae • Balkan Peninsula • Hybridization • Morphometrics . Phylogeny • cpDNA • AFLP

Introduction

Rare in animals but common in plants, hybridization is one of the key elements in plant evolution (Stebbins 1950; Abbott 1992; Arnold 1997; Thompson 2005) because it stimulates genetic recombination and hence has a potential to increases the level of variability within hybrid taxa (Grant 1981; Rieseberg 1997; Rieseberg and Carney 1998; Barton 2001; Marhold and Lihová 2006). Recently, series of molecular studies have demonstrated that hybridization can promote adaptive evolution and speciation (e.g., Matthew and Hiscock 2005). Occasional natural hybridization has always been regarded as the rule rather than the exception in plants, but the frequency of spontaneous natural hybridization varies considerably between different plant genera and families (Ellstrand et al. 1996). Rieseberg (1997) showed that natural hybridization occurs in about 34% of plant families, with 16% of genera recorded as having one or more records of natural hybrids.

In Campanulaceae, hybridization is recorded in genera from all of its main clades (sensu Eddie et al. 2003). This includes examples from the Campanulaceae s.str. clade (e.g., Campanula s. l. and Edraianthus; Damboldt 1965b; Wettstein in Murbeck 1891; Gusmus 1904; Degen 1938), Rapunculus clade (e.g., Campanula s. 1. and Triodanis; Crook 1951; Böcher 1960; Bielawska 1964, 1972; Gadella 1964, 1967; Damboldt 1965a, b; Musch and Gadella 1972;

Bradley 1975; Shetler 1982; Kovanda and Ančev 1989; Lewis and Lynch 1998; Ančev 1994; Kovanda 1999; Kovačić 2004, 2006; Kovačić and Nikolić 2006; Park et al. 2006; Liber et al. 2008; Roquet et al. 2008), "Transitional taxa" group (e.g., Wahlenbergia; Ricci and Eaton 1994; Lammers 1996). This extends further into closely related Lobeliaceae (e.g., Pratia; Murray et al. 2004).

Edraianthus DC. has its center of distribution in the Balkans (SE Europe) and it represents one of the most prominent groups of endemic plants in this region. Additional disjunct parts of this group's range are found in the Apennines, Sicily, and southern Carpathians (Wettstein 1887). Edraianthus was the subject of multiple monographs early on (e.g., Wettstein 1887; Beck 1893; Janchen 1910). The most prominent was the one by Janchen (1910), who recognized 11 taxa within this genus (ten species, one with two subspecies). The most recent monograph was offered by Lakušić (1974). In this monograph, combined with two subsequent contributions (Lakušić 1987, 1988), he recognized altogether more than 45 taxa (28 species plus a number of subspecies and/or varieties). The most significant contemporary floristic works covering SE Europe, Flora Europaea (Kuzmanov 1976) and Med-Checklist (Greuter et al. 1984), recognize between 10 and 14 species within Edraianthus, respectively, basically accepting Janchen's (1910) concepts regarding taxonomy of this genus. Also, according to Lammers (2007a, b) Edraianthus includes approximately 13 species.

Further complicating its taxonomy, three hybrid species were also described in Edraianthus. First, based on material collected by S. Murbeck on Mt. Veliki Velež (Herzegovina), Wettstein (in Murbeck 1891) described hybrid E. \times murbeckii Wettstein. According to Wettstein, this species originated from the natural cross-breeding between E. kitaibelii (A. DC.) A. DC. and E. serpyllifolius (Vis.) A. DC. Second, Gusmus (1904) described a hybrid, E. \times linifolius Gusmus, based on a single specimen collected at Sv. Jure summit (Mt. Biokovo; C. Dalmatia). However, he simply pointed out that $E . \times$ linifolius is a natural hybrid between E. pumilio (Schultes) A. DC. and E. serpyllifolius without providing any protologue for the proposed hybrid. The third Edraianthus hybrid has been described from Mt. Velebit (Croatia) by A. Degen under the name $E . \times$ intermedius Degen (Degen 1938). He considered this hybrid to originate from natural crosses between E. caricinus Schott, Nyman \& Kotschy and E. croaticus Kern. Taxonomic significance of these three previously described Edraianthus hybrids was not confirmed by any morphometric or molecular data analyses.

Many of the Edraianthus taxa occur sympatrically (Lakušić 1974). Some of them flower simultaneously for certain period of time and frequently share the same
pollinators, all of which are factors that can potentially facilitate the occurrence of natural hybridization. Thus, it may be hypothesized that the taxonomic complexity and many difficulties in the delimitation of some taxa within this genus are a direct consequence of natural hybridization between the species in sympatric zones.

In his Ph.D. thesis, Međedović (1981) made an initial observation on potential hybridization within the sympatric populations of E. tenuifolius (Waldst. \& Kit.) A. DC. (E. sect. Edraianthus) and E. wettsteinii Haláscy \& Baldaccii subsp. lovcenicus E. Mayer \& Blečić (E. sect. Uniflori) from Mt. Lovćen (Montenegro). He found individuals with intermediate features in their gross morphological characters as well as pollen morphology and chromosome characteristics. Međedović (1981) was also the first to propose the possibility of hybridization between these two taxa, but, he did not further analyze these populations nor did he formally describe this species of putative hybrid origin from Mt. Lovćen.

During our recent fieldtrip to Mt. Lovćen individuals with intermediate morphology between sympatric taxa E. tenuifolius and E. wettsteinii subsp. lovcenicus were noted again and collected. The main aim of the present study is to demonstrate and document for the first time the case of natural hybridization between species from different sections in Edraianthus. Hence, we provide here the results of multivariate morphometric and molecular phylogenetic analyses, as well as a formal description of this new hybrid species.

Materials and methods

Taxon sampling
Studies were carried out on the plants collected in the field, fixed in the ethanol-glycerol mixture (50:50) for morphological studies and dried in silica gel for molecular studies. The herbarium specimens are deposited at BEOU (Table 1). Because of the small population sizes of E. tenuifolius and the putative hybrid in their narrow hybridization zone, and their presumed endangered status, destructive sampling was limited to a minimum, which resulted in a relatively limited number of analyzed individuals. A total of 43 specimens were selected and scored for analyses. Those include 16 individuals of E. tenuifolius, 18 specimens of E. wettsteinii subsp. lovcenicus, and nine specimens of putative hybrid, all from the same locality on Mt. Lovćen (Branjevine; above Mirac village) in Montenegro (Table 1). Molecular analyses were carried out using a subset of individuals sampled for the morphometric analysis. The taxon sampling strategies used originally to delimit major lineages within Edraianthus and to infer

Table 1 Populations and number of individuals of Edraianthus wettsteinii subsp. lovcenicus, E. tenuifolius and putative hybrid occurring in the Lovćen mountain range, Montenegro, used in this study

Taxon	Origin of material	Individuals	Voucher	GenBank accession numbers (trnL-F; $r b c \mathrm{~L}-a t p \mathrm{~B}$ spacer)
E. wettsteinii subsp. lovcenicus	Štirovnik, Branjevine above village Mirac, $42^{\circ} 23.285 \mathrm{~N}, 18^{\circ} 48.206 \mathrm{E}, 1,340 \mathrm{masl}$	18	Stevanovic', V., Lakusić, D. 20946	EF213338; EF213541
E. tenuifolius	Štirovnik, Branjevine above village Mirac, $42^{\circ} 23.285 \mathrm{~N}, 18^{\circ} 48.206 \mathrm{E}, 1,340$ masl	16	Stevanovic', V., Lakusić, D. 20947	EF213333; EF213536
Putative hybrid	Štirovnik, Branjevine above village Mirac, $42^{\circ} 23.285 \mathrm{~N}, 18^{\circ} 48.206 \mathrm{E}, 1,340$ masl	9	Stevanovic', V., Lakusić, D. 20948	EF213334; EF213537

Vouchers are deposited in the herbarium of the Institute of Botany, Faculty of Biology, University of Belgrade (BEOU)
overall relationships among those lineages are detailed in Surina et al. (2007) and Stefanović et al. (2008). To the relevant portions of these backbone phylogenies (i.e., the E. tenuifolius complex and its closest relatives) we added here the representative individuals collected in the hybridization zone.

Morphometric analysis

The character states measured in this study are listed in Table 2. Descriptive statistics were calculated for each character state and multivariate analysis was performed to identify the structure of variability [principal component analysis (PCA)] and to measure the distances between groups [canonical discriminant analysis (CDA)]. Statistical analyses were performed using the package Statistica 5.1 (StatSoft 1996).

Amplified fragment length polymorphism markers

The amplified fragment length polymorphism (AFLP) procedure followed Vos et al. (1995) and Gaudeul et al. (2000) but with polymerase chain reaction (PCR) volumes halved. An initial screening of selective primers using twelve primer combinations with three nucleotides was performed. The three final primer combinations for the selective PCR were (fluorescent dye in brackets): EcoRI (6-Fam)-ACA/MseI-CAT; EcoRI (VIC)-ACG/MseI CAA; and EcoRI (NED)-ACC/MseI-CAG. The selective PCR product was purified using Sephadex G-50 Superfine (GE Healthcare Bio-Sciences, Uppsala) applied to a Multi Screen-HV plate (Millipore, Molsheim, France) in three steps of $200 \mu \mathrm{l}$ each and packed at $600 \times g$ for 1,1 , and 5 min , respectively. The same rotation was used for centrifugation of the samples ($5 \mu \mathrm{l}$ of each selective PCR product), again for $5 \mathrm{~min} .1 .2 \mu \mathrm{l}$ of the elution product was combined with $10 \mu \mathrm{l}$ formamide and $0.1 \mu \mathrm{l}$ GeneScan ROX (Applied Biosystems) and run on an ABI 3130x automated capillary sequencer. Raw AFLP data were
collected and aligned with the internal size standard using ABI Prism GeneScan analysis software 3.7.1 (Applied Biosystems). Subsequently, the GeneScan files were imported into Genographer v. 1.6.0 (available at http:// hordeum.oscs.montana.edu/genographer) for scoring of the fragments. Fragments in the size range $60-500$ bp were scored and the results were exported as a presence/absence matrix for 25 accessions including replicates belonging to different taxa thriving in close proximity: E. tenuifolius from Mt. Lovćen (Lvc1520) and Njeguši (Njg4-5), E. serpyllifolius from Mt. Orjen (Orj1-5), E. graminifolius from Mts Terzin bogaz-Durmitor (Tb1, 3) and Lovćen (Krst1-3), and E. wettsteinii subsp. lovcenicus (Lvc2, Lvc1512), E. wettsteinii subsp. wettsteinii from Mt. Rumija (Rmj5), and a putative hybrid from Mt. Lovćen (E. \times lakusicii), all from Montenegro. A neighbor-net network (Bryant and Moulton 2004), well suited to depicting the reticulate relationships, was produced using SplitsTree 4 (Huson and Bryant 2006).

Chloroplast DNA sequencing and phylogenetic reconstruction

Protocols for DNA extractions, PCR conditions, amplicon purifications, as well as sequencing procedures are outlined in Stefanović et al. $(2007,2008)$. PCR primers described by Taberlet et al. (1991) and by Hoot et al. (1995) were used to target chloroplast $t r n \mathrm{~L}-\mathrm{F}$ and $r b c \mathrm{~L}-a t p \mathrm{~B}$ spacer regions, respectively. Two closely related species from the E. tenuifolius complex, E. serbicus and E. dalmaticus, were used as outgroups. The chloroplast sequences were obtained from 20 Edraianthus individuals in total, and include multiple accessions of E. tenuifolius, geographically the most widespread. Sequences obtained for this study are deposited in GenBank (see Table 1). Alignment was done manually, using Se-Al v.2.0a11 (Rambaut 2002). Gaps in the alignments were scored as missing data, coded as binary characters, and appended to the sequence matrix (Simmons and Ochoterena 2000). Parsimony searches, along with accompanying clade support estimations, were
Table 2 Descriptive statistics and factor loadings of principal component analysis

	E. tenuifolius						E. \times lakusicii						E. wettsteinii subsp. lovcenicus						Principal component analysis		
	No	Mean	Min	Max	Std. dev.	Std. error	No	Mean	Min	Max	Std. dev.	Std. error	No	Mean	Min	Max	Std. dev.	Std. error	Factor 1	Factor 2	Factor 3
Stem height	16	19.2	6.8	41.5	11.9	3.0	9	68.0	29.2	121.6	34.2	11.4	18	38.1	20.5	67.8	12.6	3.0	-0.161	0.699	-0.049
Cauline leaves-BW	15	1.7	1.2	2.9	0.5	0.1	9	1.6	1.1	2.6	0.5	0.2	18	1.1	0.8	1.8	0.3	0.1	0.289	-0.031	-0.541
Cauline leaves-MW	15	2.6	1.9	3.5	0.6	0.1	9	1.9	1.3	2.6	0.4	0.1	18	1.5	1.1	2.1	0.3	0.1	-0.315	0.551	-0.058
Cauline leaves-WUQ	15	1.0	0.7	1.3	0.2	0.0	9	1.3	1.0	1.6	0.2	0.1	18	1.3	0.8	1.8	0.3	0.1	0.364	0.368	-0.041
Cauline leaves-TL	15	30.6	19.8	48.6	8.7	2.2	9	19.8	14.5	25.5	3.8	1.3	18	8.2	4.5	12.5	2.2	0.5	0.677	0.251	0.093
Cauline leaves-DLB	15	1.2	0.1	2.0	0.7	0.2	9	4.6	0.6	17.2	6.2	2.1	18	3.9	0.4	8.4	7.2	0.5	0.789	0.062	0.017
Rosette leaves-MW	15	3.6	1.7	8.6	2.2	0.6	8	4.1	3.1	5.1	0.6	0.2	16	2.4	1.6	3.1	0.5	0.1	-0.410	0.527	0.115
Rosette leaves-WUQ	15	1.1	0.9	1.5	0.2	0.0	9	1.6	1.1	2.7	0.5	0.2	17	1.4	1.1	1.7	0.2	0.1	0.914	-0.071	0.034
Rosette leaves-TL	15	34.3	24.4	46.8	7.9	2.0	9	53.3	30.8	84.4	14.9	5.0	17	21.0	14.4	30.6	4.5	1.1	-0.362	0.446	0.014
Inner involucral bracts-BW	16	1.8	1.0	3.1	0.6	0.2	9	1.0	0.8	1.3	0.1	0.0	18	1.0	0.6	1.6	0.3	0.1	0.785	-0.185	0.204
Inner involucral bracts-MW	16	4.1	2.7	6.0	1.0	0.2	9	2.4	1.2	3.3	0.7	0.2	18	1.9	1.0	2.4	0.3	0.1	0.872	-0.261	0.002
Inner involucral bracts-WUQ	16	2.9	1.3	4.3	0.9	0.2	9	1.8	0.8	2.4	0.5	0.2	18	1.4	0.7	1.8	0.3	0.1	0.703	-0.270	-0.089
Inner involucral bracts-TL	16	10.3	6.6	17.6	3.4	0.8	9	8.9	5.7	11.3	1.7	0.6	18	6.3	5.3	7.4	0.7	0.2	0.861	0.173	0.019
Inner involucral bracts-DLB	16	4.6	2.3	7.8	1.6	0.4	9	4.2	1.2	6.0	1.6	0.5	18	1.7	0.7	4.4	0.9	0.2	0.722	0.116	-0.172
Inner involucral bracts-DAB	16	7.9	5.8	10.8	1.5	0.4	9	8.3	5.7	10.9	1.6	0.5	18	6.3	5.3	7.4	0.7	0.2	0.684	0.477	-0.002
Central involucral bracts-BW	16	2.8	1.5	4.9	0.9	0.2	9	2.0	1.4	2.6	0.3	0.1	18	1.2	0.7	1.7	0.3	0.1	0.881	-0.017	0.136
Central involucral bracts-MW	16	6.1	5.1	7.9	0.9	0.2	9	4.2	3.0	5.2	0.7	0.2	18	2.0	1.6	2.7	0.3	0.1	0.920	-0.201	-0.012
Central involucral bracts-WUQ	16	1.8	0.8	3.4	0.6	0.1	9	1.8	1.5	2.2	0.2	0.1	18	1.6	1.2	2.2	0.3	0.1	0.340	0.091	0.485
Central involucral bracts-TL	16	13.2	8.6	20.4	3.3	0.8	9	10.6	8.1	13.0	1.6	0.5	18	6.7	5.6	9.2	0.9	0.2	0.937	0.052	0.106
Central involucral bracts-DLB	16	4.4	2.2	8.4	1.7	0.4	9	2.6	2.1	3.2	0.3	0.1	18	1.9	0.7	4.4	1.1	0.3	0.715	-0.075	0.436
Central involucral bracts-DAB	16	7.5	5.2	11.3	1.8	0.5	9	6.3	4.3	10.0	1.6	0.5	18	6.7	5.6	9.2	0.9	0.2	0.481	0.155	0.528
Outer involucral bracts-BW	16	3.2	1.9	5.0	1.1	0.3	9	2.0	1.8	2.3	0.2	0.1	18	1.2	0.8	1.7	0.3	0.1	0.901	-0.033	0.210
Outer involucral bracts-MW	16	5.6	3.6	9.5	1.5	0.4	9	3.8	2.5	4.5	0.7	0.2	18	2.0	1.4	2.6	0.4	0.1	0.863	-0.105	0.280
Outer involucral bracts-WUQ	16	1.3	0.7	1.9	0.1	0.1	9	1.6	1.3	2.4	0.3	0.1	18	1.6	1.1	2.3	0.3	0.1	-0.322	0.324	0.277
Outer involucral bracts-TL	16	18.5	11.2	30.8	5.1	1.3	9	12.2	9.6	15.7	2.1	0.7	18	7.5	5.9	9.4	1.0	0.2	0.933	-0.083	-0.007
Outer involucral bracts-DLB	16	2.7	1.1	5.8	3.1	0.3	9	2.1	0.7	4.5	1.2	0.4	18	2.2	0.8	4.7	1.3	0.3	0.300	0.285	0.539
Outer involucral bracts-DAB	16	5.0	0.1	9.1	3.1	0.8	9	4.1	0.1	11.7	4.3	1.4	18	7.5	5.9	9.4	1.0	0.2	-0.307	0.086	0.638
Calyx diameter	12	2.6	1.9	3.0	0.4	0.1	8	2.5	2.1	2.7	0.2	0.1	15	2.3	1.8	2.6	0.2	0.1	0.495	0.423	-0.240
Calyx tooth-BW	12	1.3	0.6	1.7	0.3	0.1	8	1.4	1.1	1.8	0.2	0.1	15	1.3	0.9	1.6	0.2	0.1	0.120	0.498	0.159
Calyx tooth-WUQ	12	0.3	0.2	0.5	0.1	0.0	8	0.8	0.6	1.2	0.2	0.1	15	1.0	0.9	1.2	0.1	0.0	-0.711	0.351	0.328
Calyx tooth-TL	12	5.0	3.3	6.3	1.0	0.3	8	5.3	4.6	5.8	0.4	0.1	15	4.6	3.7	5.4	0.5	0.1	0.467	0.600	0.006
Corolla-BW	11	3.3	2.5	4.1	0.5	0.2	8	2.5	1.9	3.3	0.5	0.2	14	2.4	2.2	2.8	0.2	0.0	0.632	-0.084	-0.281
Corolla-MW	11	8.6	7.0	11.5	1.3	0.4	8	8.4	6.9	9.7	0.8	0.3	14	8.1	6.4	9.2	0.8	0.2	0.434	0.305	-0.321

Table 2 continued

	E. tenuifolius						E. \times lakusicii						E. wettsteinii subsp. lovcenicus						Principal component analysis		
	No	Mean	Min	Max	Std. dev.	Std. error	No	Mean	Min	Max	Std. dev.	Std. error	No	Mean	Min	Max	Std. dev.	Std. error	Factor 1	Factor 2	Factor 3
Corolla-WB	11	4.1	3.6	5.3	0.5	0.2	8	3.9	2.6	4.4	0.6	0.2	14	3.4	2.5	4.0	0.4	0.1	0.559	0.317	-0.355
Corolla-TL	11	15.7	13.1	19.4	1.8	0.5	8	15.6	13.4	18.6	1.7	0.6	14	14.3	11.5	16.9	1.7	0.4	0.433	0.359	-0.422
Corolla-LH	11	6.0	4.8	7.5	1.0	0.3	8	6.9	5.8	8.0	0.7	0.3	14	6.4	5.4	7.9	0.7	0.2	-0.027	0.494	-0.240
Stylus length	10	12.1	8.1	15.1	2.3	0.7	4	13.3	8.3	15.8	3.4	1.7	22	11.5	6.7	15.1	1.9	0.4	0.041	0.045	-0.222
Anthers length	11	5.0	3.8	6.9	0.8	0.3	5	5.3	4.0	6.1	0.8	0.4	23	4.4	3.5	5.7	0.7	0.1	0.497	0.098	-0.141
Stamens-FL	11	0.9	0.4	1.6	0.3	0.1	2	0.9	0.8	1.1	0.2	0.1	23	1.0	0.7	1.7	0.2	0.1	-0.309	-0.015	0.026
Stamens-BL	4	1.8	1.3	2.3	0.4	0.2	0	-	-	-	-	-	18	1.6	1.3	2.0	0.2	0.1	0.151	-0.145	-0.206

Bold variable with factor loadings >0.7

 length, $W U Q$ width in the upper quarter, $W B$ width of lobe base
conducted for each region separately and concatenated. Given the moderate number of terminal units, we used Branch-and-Bound search algorithm with PAUP* v.4.0b10 (Swofford 2002), ensuring that all of most parsimonious trees will be recovered. Relative support for clades was inferred by nonparametric bootstrapping (Felsenstein 1985), using 500 repetitions with Branch-and-Bound algorithm.

Results

Morphometric analyses

Results of morphometric analysis are summarized in Table 2, showing the parameters of descriptive and multivariate analysis. In the PCA, most of the variation was explained by the first three axes, 36.67, 9.33, and 7.20%, respectively. However, because the first three PCA axes account only for 53.21% of total variability, it appears that the structural variability of the studied populations is quite complex. The PCA separated three entities on the first two axis, with the putative hybrids occupying an intermediate position between the presumed parents (Fig. 1). The individuals of E. tenuifolius stand clearly separated from the remainder of the plants included in the analysis. It is also apparent that this species shows substantial morphometrical variations for the characters scored in this study. Also, a differentiation between plants recognized as E. wettsteinii susbp. lovcenicus and intermediate plants recognized as putative hybrid is noticeable. Although these individuals are for the most part separated on both the first and the second axis, there is a region of overlap among them as

Fig. 1 Principal component analysis (PCA) of morphometric data of Edraianthus tenuifolius, E. wettsteinii subsp. lovcenicus and their putative hybrid E. \times lakusicii (ellipses are constructed with coefficient 0.95)

Table 3 Comparison of some qualitative diagnostic morphological characters of putative hybrid Edraianthus \times lakusicii with its parents E. wettsteinii subsp. lovcenicus and E. tenuifolius

	E. wettsteinii subsp. lovcenicus	E. \times lakusicii	E. tenuifolius
Leaves	Narrowly lanceolate, with more or less involute slightly ciliate margin; densely appressed-hirsute and silvery above	Narrowly linear, with flat margin, more or less densely appressed-hirsute and grayish above, ciliate up to the apex	Narrowly linear, with flat or slightly involute margin, glabrous, ciliate up to the apex with very prominent toward leaf apex reversed ciliae
Involucral bracts	Leaf like, short lanceolate, linearattenuate, much shorter than the flowers, densely appressed-hirsute and silvery above, glabrous beneath	Subovate-lanceolate, slightly attenuate, as long as or shorter than the flowers, ciliate from base to the apex, bracts base glabrous beneath and above, bract apex more or less densely appressed-hirsute and grayish above, glabrous beneath	Broadly ovate, abruptly long-attenuate, as long as or longer then flowers, ciliate, glabrous
Inflorescence	Flowers solitary, rarely $2-3(-5)$	With 3-5 (-7) subsessile flowers in terminal cluster	With 3-6 (-15) subsessile flowers in terminal cluster
Calyx	Densely appressed-hirsute	Sparsely appressed-hirsute	Glabrous or sparsely hairy
Calyx teeth	Triangular-lanceolate	Lanceolate	Linear
Corolla	Light-blue, more or less densely hirsute	Light-blue, more or less sparsely hirsute	Bluish-violet, glabrous or more or less ciliate on keel

well (Fig. 1). The most important variables on the first axis (factor loadings >0.7) are cauline leaves (DLB), rosette leaves (WUQ), inner involucral bracts (BW, MW, WUQ, TH, DLB), central involucral bracts (BW, MW, TH, DLB), outer involucral bracts (BW, MW, TH), and calyx tooth (WUQ). All of these variables except the last one were positively correlated with the first axis. However, on the second and third axis, they were not variable with factor loadings >0.7.

The intermediate morphological position of the hybrid between E. tenuifolius and E. wettsteini subsp. lovcenicus, can be accounted for in large part by the size and shape of bracts and calyx teeth, as well as by a number of leaf characters (see Table 2 for details). The morphological differences among the two analyzed species and their putative hybrid are summarized in Table 3, showing the qualitative diagnostic morphological characters.

The CDA has shown that E. tenuifolius, E. wettsteinii subsp. lovcenicus, and the putative hybrid are completely differentiated from each other (Fig. 2). The plants of E. tenuifolius are clearly separated along the first axis, while those of E. wettsteinii subsp. lovcenicus and the putative hybrid are separated along the second axis. The CDA based on four sets of morphological characters (habitus, rosette leaves, involucral bracts, flowers) indicated that in almost all cases E. wettsteinii subsp. lovcenicus and the putative hybrid show higher level of similarity (Mahalanobis distance) between them than either has with E. tenuifolius. The only exception to these results is found within the group of characters related to rosette leaves, which indicate higher similarity of the putative hybrid to E. tenuifolius, and not to E. wettsteinii susbp. lovcenicus (Table 4).

Fig. 2 Canonical discriminant analysis (CDA) of morphometric data of Edraianthus tenuifolius, E. wettsteinii subsp. lovcenicus and their putative hybrid $E . \times$ lakusicii

Phylogenetic analyses

AFLP markers

A total of 163 of reproducible bands were produced for the accessions in study, of which 4 were monomorphic. The error rate (Bonin et al. 2004) before the exclusion of unreliable characters was $<1 \%$. In the neighbor-net network (Fig. 3), four well supported groups were formed: E. serpyllifolius, E. graminifolius (both as outgroups), E. tenuifolius, and E. wettsteinii s. l. The putative hybrid nests within the E. wettsteinii s. l. group, supporting further the results based on morphological data.

Table 4 Mahalanobis distance calculated in canonical discriminant analysis (CDA) for four sets of morphological characters (habitus, rosette leaves, involucral bracts, flowers) of the Edraianthus wettsteinii subsp. lovcenicus, E. tenuifolius and putative hybrid E. \times lakusicii

$$
\text { E. tenuifolius } \quad \text { E. w. lovcenicus } \quad E . \times \text { lakusicii }
$$

Habitus

E. tenuifolius	0.000	17.001	18.993
E. w. lovcenicus	17.001	0.000	5.646
E. \times lakusicii	18.993	5.646	0.000
Rosette leaves			
E. tenuifolius	0.000	2.693	7.719
E. w. lovcenicus	2.693	0.000	12.662
E. \times lakusicii	7.719	12.662	0.000
Involucral bracts			
E. tenuifolius	0.000	30.931	35.761
E. w. lovcenicus	30.931	0.000	21.046
E. \times lakusicii	35.761	21.046	0.000
Flowers			
E. tenuifolius	0.000	8.860	6.686
E. w. lovcenicus	8.860	0.000	4.800
E. \times lakusicii	6.686	4.800	0.000

cpDNA phylogeny

To the genus-wide molecular phylogenetic analyses based on chloroplast sequence data (Stefanović et al. 2008) here we included putative hybrid together with, among others, the representatives of its sympatric populations belonging to E. tenuifolius and E. wettsteinii subsp. lovcenicus from Mt. Lovćen. Even though the putative hybrid was found to be morphologically more similar to E. wettsteinii subsp. lovcenicus than to E. tenuifolius (Fig. 1; Table 2), a result also supported by the AFLP data (Fig. 3), the parsimony analysis of its chloroplast sequence data strongly supports its grouping with E. tenuifolius (Fig. 4).

Discussion

Edraianthus tenuifolius is broadly distributed in Mediterranean and submediterranean parts of Adriatic coast, from Istria (SW Slovenia) southward to N. Albania (see Fig. 5c in Stefanović et al. 2008). This is mainly a lowland species growing in rocky grasslands and pastures, but it is also sometimes observed on much higher altitudes (e.g., upper montane and even subalpine vegetation belt). On the other hand, E. wettsteinii is a narrow endemic of Mts Lovćen, Sutorman, and Rumija in Montenegro, and is differentiated into two subspecies (Mayer and Blečić 1969; see Fig. 5d in Stefanović et al. 2008). The typical subspecies, E. wettsteinii subsp. wettsteinii, occurs on Mts Sutorman and Rumija. This

Fig. 3 A neighbor-net of AFLP phenotypes belonging to four groups of taxa of the genus Edraianthus. Numbers are bootstrap values higher than 50% (1,000 replicates); accession are labeled according to their localities of origin: Lvc Mt. Lovćen, Orj Mt. Orjen, Rmj Mt. Rumija, $T b$ Mt. Terzin bogaz (Durmitor), Njg Njeguši, Krst Mt. Lovćen, all Montenegro. Open rectangle indicates all the samples collected from Mt. Lovćen (Montenegro). The arrow indicates the phylogenetic position of the putative hybrid, nested within the clade belonging to one of its putative progenitor species (compare with Fig. 4)

Fig. 4 The strict consensus of 19 equally parsimonious trees from the combined plastid analysis ($t r n \mathrm{~L}-\mathrm{F}$ region and $r b c \mathrm{~L}-a t p \mathrm{~B}$ spacer). Numbers above branches indicate bootstrap support. Names of species are followed by two-letter country abbreviation as well as the mountain/region from which the specimen originates. Open rectangle indicates all the samples collected from Mt. Lovćen (Montenegro). The arrow indicates the phylogenetic position of chloroplast haplotype belonging to the putative hybrid (in boldface), nested within the clade of its putative maternal progenitor species. $A L$ Albania, $B H$ Bosnia and Herzegovina, $C R$ Croatia, $M N$ Montenegro, $S R$ Serbia

teeth), g-i Edraianthus tenuifolius (\mathbf{g} habitus, \mathbf{h} inflorescens with involucral bracts, \mathbf{i} flowers with calyx teeth). All from locus classicus, Montenegro, Mt. Lovćen, Branjevine above village Mirac, $42^{\circ} 23.285 \mathrm{~N}, 18^{\circ} 48.206 \mathrm{E}$
genus-wide molecular analyses based on chloroplast sequence data have shown that E. tenuifolius and E. wettsteinii form a strongly supported clade (Stefanović et al. 2008) and are phylogenetically much more closely related to each than it has been previously suspected.

The results of our analyses confirmed the occurrence of natural hybridization between the populations of E. tenuifolius and E. wettsteinii subsp. lovcenicus on Mt. Lovćen. Taken together, results of morphological and molecular analyses are consistent with the hybrid origin of intermediate individuals, described in this paper as a new nothospecies, Edraianthus \times lakusicii. Morphometric analyses have shown that this natural hybrid shares more morphological similarities with E. wettsteinii subsp. lovcenicus than with E. tenuifolius (Fig. 1). This result is also supported by the AFLP fingerprinting analysis (Fig. 3), according to which the hybrid is distinct from E. tenuifolius, and nests within E. wettsteinii group. However, the phylogenetic analysis of chloroplast haplotypes have shown that the hybrid belongs to the clade with

$\left.42^{\circ} 23.285 \mathrm{~N}, 18^{\circ} 48.206 \mathrm{E}\right)$. A involucral bracts, B calyx, $C 1$ indumentum of involucral bracts-adaxial side, $C 2$ indumentum of involucral bracts-abaxial side, D1 indumentum of calyx teethadaxial side, $D 2$ indumentum of calyx teeth—abaxial side
this natural hybrid strongly indicates the possibility of hybridization or/and introgression between well differentiated Edraianthus taxa, which shows us in new light the nature of speciation and evolution within this endemic Balkan group. For the first time the case of reticulate evolution in Edraianthus is demonstrated and documented in present study.

From the taxonomic point of view, the presence of rare hybrids within natural populations can cause problems for the delimitation of taxa (Conceição et al. 2008). Like in some other plant groups (Conceição et al. 2007), the taxonomic problems in genus Edraianthus could possibly be related to the occurrence of natural hybrids between species of this group and the much conserved floral morphology of these species.

Edraianthus \times lakusicii V. Stevanović \& D. Lakušić [Edraianthus tenuifolius (Waldst. \& Kit.) A. DC. \times E. wettsteinii Haláscy \& Baldacci subsp. lovcenicus E. Mayer \& Blečić], nothosp. nov. (Figs. 5, 6).

Type

Montenegro, Lovćen mountain range, southern slopes of Štirovnik, Branjevine above village Mirac, $42^{\circ} 23.285 \mathrm{~N}$, $18^{\circ} 48.206 \mathrm{E}$, limestone, rocky slopes exposed to bora, in grassland community with predominating Sesleria robusta Shott, Nyman \& Kotschy, 1,340 masl, 14. July 2006, Stevanović, V., Lakusić, D. 20948 (Holotype: BEOU, Isotypes: WU, NHMR).

Diagnosis

Planta hybrida inter E. tenuifolius et E. wettsteinii subsp. lovcenicus. Affinis E. wettsteinii subsp. lovcenicus sed caulis alteoribus 30-100 (-121) mm (non 20-50 (-68) $\mathrm{mm})$; folia basalia et caulina linearia vel angustaelanceolata (non lanceolata), basalia longioribus (31-) 38-68 (-84) $\times 3-4.7 \mathrm{~mm}$ (non 16-25 (-30) \times (1.5-) $2-3 \mathrm{~mm}$); capitulum semper multiflorum (non uniflorum vel multiflorum); dentibus calycis longioribus et angustioribus $4.6-5.7 \times 0.5-1.0(-1.2) \mathrm{mm}$ (non 3.7-5.1 (-5.4) \times (0.8-) 0.9-1.1 (1.2) mm). A E. tenuifolius folia basalia et caulina argenteo-pilosa (non glabra); folia involucralia subovata vel subovato-lanceolata, in parte superiore infirme contracta, breviter acuminata (non in parte inferiore lata, in parte superiore subito contracta, breviter vel longe acuminata), 9.6-14 (15.6) \times (2.5-) 3-4.5 mm (non 11.2-$23.5(-31) \times 3.5-7(-9.5) \mathrm{mm})$; calyx argenteo-pilosus (non glabrus); dentibus calycis latioribus 4.6-5.7 $\times 0.5-$ 1.0 (-1.2) mm (non 3.3-6.2 $\times 0.2-0.4(0.5) \mathrm{mm}$); corolla pilosa (non glabra), recedit.

Description

Dwarf, caespitose perennials. Rhizome stout, woody, branched. Stem simple 3-10 (-12) cm, ascending to erect, densely leafy, hirsute. Leaves narrowly linear, with flat margin, more or less densely appressed-hirsute and grayish above, glabrous beneath, entire, ciliate, ciliae strongly reversed toward leaf apex; rosette leaves (31-) 38-68 $(-84) \times 3-4(-5) \mathrm{mm}$; cauline leaves $14.5-25 \times 1-2$ $(-2.6) \mathrm{mm}$. Involucral bracts subovate-lanceolate, slightly attenuate, shorter than the flowers, ciliate from base to the apex with toward leaf apex reversed ciliae, bract base glabrous beneath and above, bract apex more or less densely appressed-hirsute and grayish above, glabrous beneath, entire, interior bracts (5.7-) 7-11×(1.2-) $1.6-3.2 \mathrm{~mm}$, exterior bracts $9.6-15.6 \times(2.5-) 3-4.5 \mathrm{~mm}$. Inflorescence with 3-5 (-7) subsessile flowers in terminal cluster. Calyx appressed-hirsute (2.1-) $2.3-2.7 \mathrm{~mm}$ in diameter; calyx teeth narrowly lanceolate, two to three times as long as the ovary, (4.6-) 5-6 $\times 0.5-1(-1.2) \mathrm{mm}$. Corolla campanulate, light-blue, hirsute, (13-) 14-16 $(-17) \times 7-9.5 \mathrm{~mm}$; corolla lobes (5.8-) 6-7.6 (-8) \times (2.6-) 3.2-4.4 mm. Stylus 8-12.5 (-16) mm long. Anthere (4-) $4.5-6 \mathrm{~mm}$ long.

Eponymy

This taxon is dedicated to the last monographer of the genus Edraianthus to Montenegrin botanist Prof. Radomir Lakušić.

Distribution and ecology

Edraianthus \times lakusicii represents a stenoendemic of Mt. Lovcén, and it might be classified as dinaric (illyrian) endemic, i.e., local endemic of S. Adriatic Dinarides. Its population size is estimated to be <50 mature individuals and the estimated "area of occupancy" is smaller than $1 \mathrm{~km}^{2}$. The new hybrid inhabits mountain pastures on limestone bedrock, at the altitudes between 1,300 and $1,400 \mathrm{~m}$, in rocky grassland communities where Sesleria robusta is a dominant species and other frequent taxa include Edraianthus wettsteinii subsp. lovcenicus, E. tenuifolius, E. graminifolius L. s. 1., Stachys recta L. s. 1., Scabiosa crenata Cirillo, Astragalus vesicarius L. s. 1., Dianthus sylvestris Wulfen, Silene petraea Waldst. \& Kit., Petrorhagia saxifraga Link, Amphoricarpos neumayeri Visiani, Teucrium arduinii L., Fumana ericoides Pau, Asperula cynanchica L., Viburnum maculatum Pantoc. etc.

Acknowledgments We thank Gordana Kasom and Zlatko Bulić (Institute for Nature Protection, Podgorica, Montenegro) for their help in the field investigation; Maria Kuzmina (Department of Biology, University of Toronto, Mississauga, Canada) and Peter Schönswetter and Gerald Schneeweiss (Department of Biogeography and Botanical Garden, Faculty Centre Botany, University of Vienna, Austria) for their help with sequencing, AFLP fingerprinting and for molecular analyses; Sonja Šiljak-Jakovljev, Olivier Catrice (Department of Biodiversity, Systematics and Evolution, University of Paris-Sud, France) \& Maja Tomašević (Faculty of Biology, University of Belgrade, Serbia) for their kind cession of the part of their unpublished data about genome size of genus Edraianthus. Critical comments from Karol Marhold as well as anonymous reviewers further improved the presentation of our results. Investigation was supported by grants of: Ministry for Sciences and Natural Protection of Serbia (No. 143015), European Union (Marie Curie Grant MEIF-CT-2005024315), as well as by the NSERC of Canada grant 326439-06 to Saša Stefanović.

References

Abbott RJ (1992) Plant invasions, interspecific hybridizations and the evolution of new plant taxa. Trends Ecol Evol 7:401-405
Ančev ME (1994) Campanula L. in the Bulgarian flora: taxonomy and evolution. God Sofiisk Univ Kliment Ohridski Biol Fak 2(85):193-197
Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford
Barton NR (2001) The role of hybridization in evolution. Mol Ecol 10:551-568
Beck G (1893) Die Gattung Edraianthus. Wien Illus Gart Ztg 18(8-9):237-299

Bielawska H (1964) Cytogenetic relationships between lowland and montane species of Campanula rotundifolia L., C. cochleariifolia Lam and C. rotundifolia L. Acta Soc Bot Pol 33(1):15-44
Bielawska H (1972) Cytogenetic relationships among some palearctic and nearctic tetraploid taxa of the Campanula rotundifolia L . group. Acta Soc Bot Pol 41(2):293-300
Böcher TW (1960) Experimental and cytological studies on plant species. V. The Campanula rotundifolia complex. Biol Skr Dan Vid Selsk 11(4):1-69

Bonin A, Bellemain E, Bornken Eidese P, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261-3273
Bradley RT (1975) Hybridization between Triodanis perfoliata and Triodanis biflora (Campanulaceae). Brittonia 27:110-114
Bryant D, Moulton V (2004) NeighborNet: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255-265
Conceição AS, Queiroz LP, Lambert SM, Pereira ACS, Borba EL (2007) Biosystematics of Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae-Caesalpinioideae) based on allozyme and morphometric analyses. Plant Syst Evol 270:183-207
Conceição AS, Queiroz LP, Borba EL (2008) Natural hybrids in Chamaecrista sect. Absus subsect. Baseophyllum (LeguminosaeCaesalpinioideae): genetic and morphological evidence. Plant Syst Evol 271:19-27
Crook HC (1951) Campanulas-their cultivation and classification. Country Life Ltd/Charles Scribner's Sons, London
Damboldt J (1965a) Zytotaxonomische Revision der isophyllen Campanulae in Europa. Bot Jahrb 84:302-358
Damboldt J (1965b) Campanula tommasiniana Koch und C. waldsteiniana R. et S.: Zur Taxonomie zweier mediterraner Reliktsippen. Österr Bot Z 112:392-406
Degen Á (1938) Flora Velebitica II. Band Verlag der Ungar. Akademie der Wissenschaften, Budapest
Eddie WMM, Shulkina T, Gaskin J, Haberle RC, Jansen RK (2003) Phylogeny of Campanulaceae s.str. inferred from ITS sequences of nuclear ribosomal DNA. Ann MO Bot Gard 90:554-575
Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci USA 93:5090 5093
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791
Gadella TWJ (1964) Cytotaxonomic studies in the genus Campanula. Wentia 11:1-104
Gadella TWJ (1967) The taxonomic significance of two artificially produced hybrids in the genus Campanula. Acta Bot Neerl 15:624-629
Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625-1637
Grant V (1981) Plant speciation. Columbia University Press, New York
Greuter W, Burdet HM, Long G (1984) Med-Checklist 1. Conservatoire et Jardin botanique de la Ville Genève, Genève
Gusmus H (1904) Edrajanthus. Möllers Dtsch Gärt Ztg 19:151-153
Hoot SB, Culham A, Crane PR (1995) The utility of atpB gene sequences in phylogenetic relationships: comparison with $r b c \mathrm{~L}$ and 18 S ribosomal DNA sequences in Lardizabalaceae. Ann MO Bot Gard 82:194-207
Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254-267
Janchen E (1910) Die Edraianthus-Arten der Balkanländer. Mitt Naturwiss Ver Univ Wien 8(1):1-40
Kovačić S (2004) The genus Campanula L. (Campanulaceae) in Croatia, circum-Adriatic and west Balkan region. Acta Bot Croat 63(2):171-202
Kovačić S (2006) Srodstveni odnosi i korologija izofilnih i heterofilnih zvončića (Campanula L., Campanulaceae) primorskih Dinarida. Doctoral thesis, Biološki odsjek, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu
Kovačić S, Nikolić T (2006) Relations of the western Balkan endemic Campanula L. (Campanulaceae) lineages based on comparative floral morphometry. Plant Biosyst 140(3):260-272
Kovanda M, Ančev M (1989) The Campanula rotundifolia complex in Bulgaria. Preslia 61:193-207

Kovanda M (1999) Campanula \times iserana (C. rhomboidalis $\times C$. rotundifolia), a new hybrid in Campanula. Thaiszia J. Bot. Košice 9:15-18
Kuzmanov B (1976) Edraianthus A. DC. In: Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 4. Cambridge University Press, Cambridge, pp 99-100
Lakušić R (1974) Prirodni sistem populacija i vrsta roda Edraianthus DC. God Biol Inst Univ Sarajevu 26 (Posebno izdanje):1-130

Lakušić R (1987) Novi sistemi roda Edraianthus DC na Dinaridima. Bilten Društva ekologa Bosne i Hercegovine, Serija A Ekološke monografije 3:106-116
Lakušić R (1988) Protoedraianthus Lakušić status nova. In: Slišković T, Sijarić R, Šilić Č, Obratil S (eds) Minerali, stijene, izumrli i živi svijet Bosne i Hercegovine. Proceedings of the Zemljaski Muzej Bosne i Hercegovine. Zemljaski Muzej Bosne i Hercegovine, Odeljenje za prirodne nauke, Sarajevo, pp 263-272
Lammers TG (1996) Phylogeny, Biogeography, and Systematics of the Wahlenbergia fernandeziana complex (Campanulaceae: Campanuloideae). Syst Bot 21:397-415
Lammers TG (2007a) Campanulaceae. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, vol 8. Asteridae. Springer, Berlin, pp 26-56
Lammers TG (2007b) World checklist and bibliography of Campanulaceae. Royal Botanical Gardens, Kew
Lewis P, Lynch M (1998) Campanulas-a gardener's guide. Timber Press, Portland
Liber Z, Kovačić S, Nikolić T, Likić S, Rusak G (2008) Relations between western Balkan endemic Campanula L. (Campanulaceae) lineages: evidence from chloroplast DNA. Plant Biosyst 142(1):40-50
Marhold K, Lihová J (2006) Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Plant Syst Evol 259:143-174
Matthew JH, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411-423
Mayer E, Blečić V (1969) Zur Taxonomie und Chorologie von Edraianthus section Uniflori. Phyton (Horn) 13(3-4):241-247
Međedović S (1980) Neke odlike hromozomskih komplemenata polena i sjemenjače Edraianthus dalmaticus DC. i Edraianthus tenuifolius (W.K.) DC. God Biol Inst Univ Sarajevo 33:113-128
Međedović S (1981) Citogenetičke, fiziološke i morfološke osnove sistematskih odnosa sekcija Spathulati Janchen i Uniflori Wettstein emend Janchen roda Edraianthus DC. Doctoral dissertation, Prirodno-matematički fakultet Univerziteta u Sarajevu, Sarajevo
Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383-404
Murbeck S (1891) Beiträge zur Kenntnis der Flora von Südbosnien und der Hercegovina. Acta Univ Lund 27:1-182
Murray BG, Datson PM, Lai ELY, Sheath KM (2004) Polyploidy, hybridization and evolution in Pratia (Campanulaceae). NZ J Bot 42:905-920
Musch A, Gadella TWJ (1972) Some notes on the hybrid between Campanula isophylla Mor and C. pyramidalis L. Acta Bot Neerl 21:605-608
Park JM, Kovačić S, Liber Z, Eddie WMM, Schneeweiss GM (2006) Phylogeny and biogeography of isophyllous species of Campanula (Campanulaceae) in the Mediterranean area. Syst Bot 31:862-880
Rambaut A (2002) Se-Al sequence alignment editor, v2.0a11. University of Oxford, Oxford
Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132-140
Ricci M, Eaton L (1994) The rescues of Wahlenbergia larrainii in Robinson Crusoe Island, Chile. Biol Conserv 68:89-93

Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359-389
Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599-624
Roquet C, Sáez L, Aldasoro JJ, Alfonso S, Alarcón MK, Garcia-Jacas N (2008) Natural delimitation, molecular phylogeny and floral evolution in Campanula. Syst Bot 33:203-217
Shetler SG (1982) Variation and evolution of the Nearctic harebells (Campanula subsect. Heterophylla). Phanerogamarum Monogr 11:1-516
Simmons MP, Ochoterena H (2000) Gaps as characters in sequencebased phylogenetic analyses. Syst Biol 49:369-381
Šoljan D (1987) Diferencijacija populacija i vrsta roda Edraianthus DC. na području planine Biokovo. Doctoral thesis, Prirodnomatematički fakultet Univerziteta u Sarajevu, Sarajevo
StatSoft (1996) STATISTICA (data analysis software system), version 5.1. StatSoft Inc, Tulsa. www.statsoft.com
Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York
Stefanović S, Kuzmina M, Costea M (2007) Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. Am J Bot 94:568-589

Stefanović S, Lakušić D, Kuzmina M, Međedović S, Tan Kit, Stevanovic V (2008) Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non-coding plastid DNA sequences. Taxon 57:452-475
Surina B, Schönswetter P, Schneeweiss M (2007) Phylogeny and phylogeography of the genus Edraianthus (Campanulaceae): a preliminary report. In: Aspöck U, Haring E, Hörweg C, Repp K, Sattmann H (eds) 9. Jahrestagung der Gesellschaft für Biologische Systematik (GfBs), Abstracts, Naturhistorisches Museum Wien \& Gesellschaft für Biologische Systematik (GfBs), Vienna, p 157
Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), v4.0b2a. Sinauer, Sunderland
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of the non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105-1109
Thompson DJ (2005) Plant evolution in the Mediterranean. Oxford University Press, Oxford
Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407-4414
Wettstein RV (1887) Monographie der Gattung Hedraeanthus. Denkschr Kaiserl Akad Wiss Wien Math Naturwiss Kl 53(2):185-218

[^0]: D. Lakušić (\boxtimes) • T. Rakić • V. Stevanović

 Institute of Botany and Botanical Garden Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
 e-mail: dlakusic@bio.bg.ac.rs; dlakusic@bfbot.bg.ac.rs
 T. Rakić
 e-mail: tamaraz@bio.bg.ac.rs
 V. Stevanović
 e-mail: vstev@bio.bg.ac.rs
 S. Stefanović

 Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
 e-mail: sasa.stefanovic@utoronto.ca

 ## B. Surina

 Department of Biogeography and Botanical Garden, Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
 e-mail: bostjan.surina@prirodoslovni.com

