Sequences

A sequence is a list of numbers written in a definite order denoted as:

$$a_1, a_2, \ldots, a_n, \ldots = \{a_n\},$$

where a_1 is the first term of the sequence, a_2 is the second term and in general, a_n is the nth term. (Note that often, unless stated otherwise, it is assume that the values of n start with $n = 1$).

For example, $5, 10, 15, 20, 25 \ldots = \{5n\} = \{a_n\}$ or

$$-\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81} \ldots = \left\{\frac{1}{(-3)^n}\right\}_n^{\infty}$$

If a sequence $\{a_n\}$ has a limit, that is $\lim_{n \to \infty} a_n = L$ where L is a real number, then it is said to be convergent, and converges to L.

If the limit of the sequence does not exist, then the sequence is said to be divergent.

For instance, the sequence $\{r^n\}$ is convergent if $-1 < r \leq 1$, that is,

$$\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{if } -1 < r < 1 \\ 1, & \text{if } r = 1 \end{cases}, \text{ and divergent otherwise.}$$

Example. Determine if each sequence is convergent or divergent.

(a) $\{a_n\} = \{3 + e^{-n}\} \quad$ (b) $\{a_n\} = \{(-0.5)^n\}$
Solution.

(a) \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} (3 + e^{-n}) = 3 \). Convergent.

(b) \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-0.5)^n = 0 \). Convergent.

(c) \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{3 + 5n} = \lim_{n \to \infty} \frac{n}{3/n + 5} = +\infty \). Divergent.

(d) Note that \(\{a_n\} = \{(-1)^n\} = -1, 1, -1, 1, ... \)
\(\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n \) does not exist. Divergent.