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1. (10 points) Prove the following theorem

If f, g, h : [0,∞) → R satisfy f(x) ≤ g(x) ≤ h(x) for all x ∈ [0,∞) and lim
x→∞

f(x) =

lim
x→∞

h(x) = L, then lim
x→∞

g(x) = L.

Solution: Let ε > 0 be given. Since f, h
x→∞−−−−→ L, we know there exists Mf ,Mg > 0 such that

|f(x) − L| < ε whenever x > Mf and |h(x) − L| < ε whenever x > Mh. Let M = max {Mf ,Mg},
so that the previous two inequalities hold true if x > M . Moreover, note that we can write each
inequality as

L− ε < f(x) < L+ ε and L− ε < h(x) < L+ ε.

Take the first half of the first inequality, the second half of the second inequality (both underlined),
and combined with the hypothesis that f(x) ≤ g(x) ≤ h(x), we get

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε

so that |g(x)− L| < ε as required.
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2. Define the function f(x) =

{
x x ∈ Q
0 otherwise

.

Note: You may freely assume that both Q and R \Q are dense in R.

(i) (5 points) Show that f is continuous at 0.

Solution: Clearly f(0) = 0, so we need to show that lim
x→0

f(x) = 0. Let ε > 0 be given, and

set δ = ε. Suppose |x| < δ. If x ∈ R \Q then |f(x)| = |0| < ε as required. Otherwise, if x ∈ Q
then |f(x)| = |x| < δ = ε. In either case, |f(x)| < ε, showing that the limit is 0.

(ii) (5 points) Show that f is not continuous anywhere else.

Solution: Fix some c 6= 0.

Case 1: c ∈ Q.

Let ε = |c|/2 > 0 and suppose δ > 0 is given. Since the irrationals are dense in R, we can find
some irrational p satisfying |c− p| < δ, in which case |f(c)− f(p)| = |c| > |c|/2 = ε.

Case 2: c ∈ R \Q.

Let ε = |c|/2 > 0 and suppose δ > 0 is given. Let ρ = min {ε, δ} > 0, and choose some rational
number q such that |c− q| < ρ, which we can do as the rationals are dense. Note then that

|q − c| < ρ ⇒ c− ρ < q < c+ ρ.

If c > 0 then q > c − ρ > c − c/2 = c/2, and |f(q) − f(c)| = |f(q)| = |q| > c/2 > ε. If c < 0
then q < c+ ρ < c− c/2 < c/2 < 0 implies that |f(q)− f(c)| = |q| = −q > −c/2 > ε.
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3. (10 points) Suppose f : R→ R, and there exists some K > 0 such that |f(x)− f(y)| ≤ K|x− y| for all
x, y ∈ R. Show that f is uniformly continuous on R.

Solution: Let ε > 0 be given and set δ = ε/K > 0. Now if x, y ∈ R satisfy |x− y| < δ, then

|f(x)− f(y)| ≤ K|x− y| < K
ε

K
= ε

showing that f is uniformly continuous, as required.
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4. (10 points) Define f : R→ R by f(x) = 3x3 − 6x− 1. Show that the function f has at least two roots.

Solution: Since f is a polynomial it’s certainly continuous. Moreover, f(−2) = −13 < 0, f(−1) =
2 > 0 and f(0) = −1 < 0. Thus by the (weak) Intermediate Value Theorem, there is a root to f in
[−2,−1] and a root in [−1, 0], hence there are at least two roots to f .
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5. (10 points) Write down a function f : R → R which is continuous on all of R but not differentiable for
each n ∈ Z. Be sure to justify your answer, but keep your justifications short and to the point.

Solution: Consider the function f̂ : [−1, 1] → R given by f̂(x) = |x|, and define f : R → R as the

2-periodic extension of f̂ ; that is, f(x) = f̂(x) for x ∈ [−1, 1] and f(x+ 2) = f(x). On the interval
[2k − 1, 2k + 1], this equivalent to saying that f(x) = |x− 2k|.

y

x

The function f̂ is continuous on (−1, 1) and so to check that f is continuous, we need only do this
at its weld, for which is suffices to check continuity at x = 1. But indeed,

lim
x→1−

f(x) = lim
x→1−

|x| = 1 and lim
x→1+

f(x) = lim
x→1+

|x− 2| = 1,

showing that f is continuous at x = 1.

We know f̂ is not differentiable at x = 0, and by periodicity it is therefore not differentiable at any
even number. It remains to check the odd numbers, for which x = 1 suffices. Here we have

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

|1 + h| − 1

h
= lim

h→0−

(1 + h)− 1

h
= 1

(here we’ve used the fact that if h < 0 is sufficiently small, 1 + h > 0). Similarly

lim
h→0+

f(1 + h)− f(1)

h
= −1.

Thus f is not differentiable at x = 1, and by periodicity, not differentiable at all odd integers.
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6. (10 points) Define the function f(x) =

{
x2 sin(1/x) x 6= 0

0 x = 0
. Show that f is differentiable at x = 0.

Solution: Applying the limit definition of the derivative:

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0

x2 sin(1/x)

x
= lim

x→0
x sin

(
1

x

)
.

Note that | sin(1/x)| ≤ 1 for all x 6= 0, so 0 ≤ |x sin(1/x)| ≤ |x|. By the Squeeze Theorem, the
bounding function both tend to zero as x→ 0, so

lim
x→0

∣∣∣∣x sin

(
1

x

)∣∣∣∣ = 0, which implies that lim
x→0

x sin

(
1

x

)
= 0,

Thus f ′(0) = 0, showing that f is differentiable at 0.
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