MAT135H Term Test No. 3 Questions

1 Question No. 2 - Easy (2 points)

Version 1

The slope $m_{\tan }$ of the tangent line to the curve $y=g(x)$ at the point $R\left(x_{0}, g\left(x_{0}\right)\right)$ is given by

$$
m_{\tan }=\lim _{x \rightarrow x_{0}} \quad=\lim _{h \rightarrow 0}
$$

Fill in the two blanks. You must clearly and coherently write your final answer with the appropriate limit in front of your final answer. Circle your final answers.

Version 2

The slope $m_{\tan }$ of the tangent line to the curve $y=k(x)$ at the point $Q\left(x_{0}, k\left(x_{0}\right)\right)$ is given by

$$
m_{\tan }=\lim _{x \rightarrow x_{0}} \square=\lim _{h \rightarrow 0}
$$

Fill in the two blanks. You must clearly and coherently write your final answer with the appropriate limit in front of your final answer. Circle your final answers.

Version 3

The slope $m_{\tan }$ of the tangent line to the curve $y=n(x)$ at the point $U\left(x_{0}, n\left(x_{0}\right)\right)$ is given by

$$
m_{\tan }=\lim _{x \rightarrow x_{0}}=\lim _{h \rightarrow 0}
$$

Fill in the two blanks. You must clearly and coherently write your final answer with the appropriate limit in front of your final answer. Circle your final answers.

Version 4

The slope $m_{\tan }$ of the tangent line to the curve $y=s(x)$ at the point $T\left(x_{0}, s\left(x_{0}\right)\right)$ is given by

$$
m_{\tan }=\lim _{x \rightarrow x_{0}}-=\lim _{h \rightarrow 0}
$$

Fill in the two blanks. You must clearly and coherently write your final answer with the appropriate limit in front of your final answer. Circle your final answers.

2 Question No. 3 - Medium (3 points)

Version 1

Find an equation of the normal line to the graph of $y=u(x)$ at $x=-4$, if $u(-4)=5$ and $u^{\prime}(-4)=-3$.

You must clearly and coherently justify your work. You cannot provide only the final answer. Your final answer should be simplified to $y=m x+b$ form. Circle your final answer.

Version 2

Find an equation of the normal line to the graph of $y=g(x)$ at $x=-3$, if $g(-3)=11$ and $g^{\prime}(-3)=-2$.

You must clearly and coherently justify your work. You cannot provide only the final answer. Your final answer should be simplified to $y=m x+b$ form. Circle your final answer.

Version 3

Find an equation of the normal line to the graph of $y=k(x)$ at $x=4$, if $k(4)=-5$ and $k^{\prime}(4)=5$.
You must clearly and coherently justify your work. You cannot provide only the final answer. Your final answer should be simplified to $y=m x+b$ form. Circle your final answer.

Version 4

Find an equation of the normal line to the graph of $y=n(x)$ at $x=-1$, if $n(-1)=-3$ and $n^{\prime}(-1)=10$.

You must clearly and coherently justify your work. You cannot provide only the final answer. Your final answer should be simplified to $y=m x+b$ form. Circle your final answer.

3 Question No. 4 - Medium (3 points - 1.5 points for each part)

Version 1

Find $F^{\prime}(\pi)$ given that $f(\pi)=1, f^{\prime}(\pi)=-2, g(\pi)=2$, and $g^{\prime}(\pi)=-1$.

Part A: $F(x)=x^{2}(4 f(x)-7 g(x))$
Part B: $F(x)=\frac{x f(x)}{7 x+2 g(x)}$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for Part A and Part B.

Version 2

Find $G^{\prime}(\pi)$ given that $f(\pi)=-2, f^{\prime}(\pi)=1, g(\pi)=-1$, and $g^{\prime}(\pi)=2$.
Part A: $G(x)=5 x(3 f(x)-8 g(x))$
Part B: $G(x)=\frac{2 f(x)}{x^{2}+2 g(x)}$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for Part A and Part B.

Version 3

Find $H^{\prime}(\pi)$ given that $s(\pi)=1, s^{\prime}(\pi)=-1, t(\pi)=-2$, and $t^{\prime}(\pi)=2$.
Part A: $H(x)=5 x(3 t(x)-8 s(x))$
Part B: $H(x)=\frac{2 s(x)}{x^{2}+2 t(x)}$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for Part A and Part B.

Version 4

Find $H^{\prime}(\pi)$ given that $s(\pi)=2, s^{\prime}(\pi)=-2, t(\pi)=-1$, and $t^{\prime}(\pi)=1$.
Part A: $H(x)=x^{2}(4 t(x)-7 s(x))$
Part B: $H(x)=\frac{x s(x)}{7 x+2 t(x)}$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for Part A and Part B.

4 Question No. 5 - Difficult (4 points)

Version 1 \& 2

Let $f(x)=\frac{-1}{\sqrt{3-x}}$. Using the definition of the derivative, find $f^{\prime}(1)$.
You cannot use differentiation techniques.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 3 \& 4

Let $f(x)=\frac{1}{\sqrt{4-x}}$. Using the definition of the derivative, find $f^{\prime}(2)$.
You cannot use differentiation techniques.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

5 Question No. 6 - Challenging (4 points)

Version 1 \& 4

Suppose that

$$
f(x)= \begin{cases}5 x+2 x^{4} \cos \left(\frac{5}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Is $f(x)$ differentiable at $x=0$?
Hint: Squeeze theorem.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 2 \& 3

Suppose that

$$
f(x)= \begin{cases}-3 x+2 x^{4} \sin \left(\frac{4}{x^{2}}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Is $f(x)$ differentiable at $x=0$?
Hint: Squeeze theorem.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

