MAT135H Term Test No. 2 Questions

1 Question No. 1 - Easy (1 point for each function)

Version 1

Find $\lim _{x \rightarrow 0} f(x)$, where $x+1 \leq f(x) \leq e^{x}$ for all x in the interval $(-1,1)$.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer. No decimal numbers as a final answer.

Version 2

Find $\lim _{x \rightarrow 1} h(x)$, where $1-2 x \leq h(x) \leq-x^{2}$ for all x in the interval $(0,2)$.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer. No decimal number as a final answer.

Version 3

Find $\lim _{x \rightarrow 0} h(x)$, where $e^{-x} \leq h(x) \leq-x+1$ for all x in the interval $(-1,1)$. You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer. No decimal number as a final answer.

Version 4

Find $\lim _{x \rightarrow 1} f(x)$, where $2 x-1 \leq f(x) \leq x^{2}$ for all x in the interval $(0,2)$.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer. No decimal number as a final answer.

2 Question No. 2 - Medium (3 points - 1.5 points for each part)

Version 1

Assume that $f(x)$ is a continuous function for all real numbers. Determine the following limits if $\lim _{x \rightarrow 0^{+}} f(x)=A$ and $\lim _{x \rightarrow 0^{-}} f(x)=B$:

Part A: $\lim _{x \rightarrow 0^{-}}\left(f\left(x^{3}\right)-f(x)\right)$
Part B: $\lim _{x \rightarrow 0^{-}} f\left(x^{2}-x\right)$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 2

Assume that $g(x)$ is a continuous function for all real numbers. Determine the following limits if $\lim _{x \rightarrow 0^{+}} g(x)=C$ and $\lim _{x \rightarrow 0^{-}} g(x)=D$:

Part A: $\lim _{x \rightarrow 0^{+}}\left(g\left(x^{2}\right)-g(x)\right)$
Part B: $\lim _{x \rightarrow 0^{+}} g\left(x^{3}-x\right)$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 3

Assume that $f(x)$ is a continuous function for all real numbers. Determine the following limits if $\lim _{x \rightarrow 0^{+}} f(x)=C$ and $\lim _{x \rightarrow 0^{-}} f(x)=D$:

Part A: $\lim _{x \rightarrow 0^{-}}\left(f\left(x^{3}\right)-f(x)\right)$
Part B: $\lim _{x \rightarrow 0^{-}} f\left(x^{2}-x\right)$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 4

Assume that $g(x)$ is a continuous function for all real numbers. Determine the following limits if $\lim _{x \rightarrow 0^{+}} g(x)=A$ and $\lim _{x \rightarrow 0^{-}} g(x)=B$:

Part A: $\lim _{x \rightarrow 0^{+}}\left(g\left(x^{2}\right)-g(x)\right)$
Part B: $\lim _{x \rightarrow 0^{+}} g\left(x^{3}-x\right)$
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

3 Question No. 3 - Medium (3 points - 1 point for each part)

Version 1

Find all horizontal asymptotes, if any, of the function $f(x)=\sqrt{x}(\sqrt{x+3}-$ $\sqrt{x-2})$.

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 2

Find all horizontal asymptotes, if any, of the function $f(x)=\sqrt{x}(\sqrt{2 x+1}-$ $\sqrt{2 x-1})$.
You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 3

Find all horizontal asymptotes, if any, of the function $f(x)=\sqrt{x}(\sqrt{3 x+7}-$ $\sqrt{3 x-7})$.

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

Version 4

Find all horizontal asymptotes, if any, of the function $f(x)=\sqrt{x}(\sqrt{x+5}-$ $\sqrt{x-2})$.

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer.

4 Question No. 4 - Difficult (4 points)

Version 1

For what values of a and b is the following function continuous for all real numbers?

$$
g(x)= \begin{cases}b-\frac{a(x+1)}{|1-x|} & \text { for } x \leq-1 \\ 4 \arctan (x)+a & \text { for }-1<x<1 \\ 3 b e^{x}-a \ln (x) & \text { for } x \geq 1\end{cases}
$$

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for a and b.

Version 2

For what values of a and b is the following function continuous for all real numbers?

$$
f(x)= \begin{cases}\frac{a \cos (x)}{3}+b-2 & \text { for } x<0 \\ a+\frac{b|x-2|}{x-2} & \text { for } 0 \leq x<2 \\ 3 x^{2}-7 b & \text { for } x \geq 2\end{cases}
$$

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for a and b.

Version 3

For what values of m and n is the following function continuous for all real numbers?

$$
f(x)= \begin{cases}-x^{2}+3 & \text { for } x<-1 \\ 2 n+\frac{m(x+1)}{|x+1|} & \text { for }-1 \leq x<0 \\ -\frac{m \cos (x)}{2}+n+1 & \text { for } x \geq 0\end{cases}
$$

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for m and n.

Version 4

For what values of m and n is the following function continuous for all real numbers?

$$
g(x)= \begin{cases}m+\frac{n(x-3)}{|3-x|} & \text { for } x<0 \\ -4 m \arctan (x)+n e^{2 x} & \text { for } 0 \leq x \leq 1 \\ 3 n+m \ln (x)+1 & \text { for } x>1\end{cases}
$$

You must clearly and coherently justify your work. You cannot provide only the final answer. Circle your final answer for m and n.

5 Question No. 5 - Challenging (4 points)

Version 1

Show that the equation $4^{x}=\frac{34}{x}$ has a solution for $x>0$.
Make sure to verify all assumptions.
You must clearly and coherently justify your work.

Version 2

Show that the equation $3^{x}=\frac{20}{x}$ has a solution for $x>0$.
Make sure to verify all assumptions.
You must clearly and coherently justify your work.

Version 3

Show that the equation $5^{x}=\frac{60}{x}$ has a solution for $x>0$.
Make sure to verify all assumptions.
You must clearly and coherently justify your work.

Version 4

Show that the equation $2^{x}=\frac{10}{x}$ has a solution for $x>0$.
Make sure to verify all assumptions.
You must clearly and coherently justify your work. You cannot provide only the final answer.

