The Robert Gillespie ACADEMIC SKILLS CENTRE

Proofs by Contradiction and Contrapositive

Proof by Contrapositive:

Proof by contrapositive can be used to prove if-then statements indirectly. The statement $P \Rightarrow Q$ is logically equivalent to its contrapositive $\neg Q \Rightarrow \neg P$. Since *logically equivalent* means that when one is true the other must also be true, if we prove that the contrapositive is true, we also proved the original statement. Hint: use the contrapositive when there are "negative" statements (no solutions, not natural, \neq , \notin , etc.), when the if part is hard to start from, or simply when stuck.

Example. Use the contrapositive the prove that if $c > \frac{49}{8}$ then $f(x) = 2x^2 + 7x + c$ has no solutions.

Solution.

First, we formulate the contrapositive:

•
$$P$$
 is $c > \frac{49}{8}$ so $\neg P$ is $c \le \frac{49}{8}$.
• Q is $f(x) = 2x^2 + 7x + c$ has no solutions so $\neg Q$ is $f(x) = 2x^2 + 7x + c$ has at least one solution.

Therefore, the contrapositive is if $f(x) = 2x^2 + 7x + c$ has at least one solution then $c \le \frac{49}{8}$. For a quadratic polynomial $f(x) = ax^2 + bx + c$ to have roots its determinant must satisfy $b^2 - 4ac \ge 0$. For our polynomial that is $(7)^2 - 4(2)(c) \ge 0$. We try to isolate C:

(

$$(7)^{2} - 4(2)(c) \ge 0$$
$$49 - 8c \ge 0$$
$$49 \ge 8c$$
$$\frac{49}{2} \ge c$$

which was what we wanted. Since the contrapositive is equivalent to the original statement, we have proven that if $c > \frac{49}{8}$ then $f(x) = 2x^2 + 7x + c$ has no solutions.

Proof by Contradiction:

Proof by contradiction can be used to prove any statement, including if-then. To prove a statement P by contradiction:

- 1. Formulate $\neg P$ and assume it is true.
- 2. Manipulate the statement(s) in $\neg P$ to find a contradiction. A contradiction means two opposing statements being true at the same time (e.g. x = 0 and $x \neq 0$).
- Hint: use contradiction when there are negative statements, "or" statements or simply when stuck.
- **Example.** Prove that if $a^2 + 5$ is even then a is odd.

Solution.

1. The statement to prove in this case has the form $P \Rightarrow Q$, where Pmeans $a^2 + 5$ is even and Q means a is odd. The negation of $P \Rightarrow Q$ is $P \land \neg Q$, that would be $a^2 + 5$ is even and a is even. 2. Now, we must assume these facts are true and use them to achieve a contradiction.

We've assumed that a is even, that means a = 2k for some $k \in \mathbb{Z}$. We can use this information about a and plug it into $a^2 + 5$:

$$a^{2} + 5 = (2k)^{2} + 5$$

$$a^{2} + 5 = 4k^{2} + 5$$

$$a^{2} + 5 = 4k^{2} + 4 + 1$$

$$a^{2} + 5 = 2(2k^{2} + 2) + 1$$

Since $a^2 + 5$ takes the form 2m + 1 for $m \in \mathbb{Z}$, it must be odd. However, we originally said $a^2 + 5$ is even. This is a contradiction; therefore the negation must be false and the original statement must be true.