The Robert Gillespie ACADEMIC SKILLS CENTRE

Logical Equivalence and Negating Logical Statements

Two logical statements are equivalent if the values in their truth tables are all equal.

Example. Show $\neg(P \Rightarrow Q)$ is equivalent to $P \land \neg Q$.

Solution.

To make the truth table for logical statement(s) we break them down into their constituent parts. For example $\neg(P \Rightarrow Q)$ is made up from P and Q, which are put together as $P \Rightarrow Q$ and finally negated into $\neg(P \Rightarrow Q)$.

In $P \land \neg Q$ we still have P and Q, but we also need $\neg Q$ which together with P makes $P \land \neg Q$.

First we fill in the columns for the statements P and Q, making sure we have every combination of true and false (i.e., every combination of their values).

Р	Q	$\neg Q$	$P \wedge \neg Q$	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$
Т	Т				
Т	F				
F	Т				
F	F				

Then we fill in the rest of the columns using the tables for the other connectives (not, and, or, ...).

©creative commons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-sa/4.0</u>.

Р	Q	$\neg Q$	$P \wedge \neg Q$	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	Т
F	Т	F	F	Т	F
F	F	Т	F	Т	F

Since the columns for $\neg(P \Rightarrow Q)$ and $P \land \neg Q$ are the same, the statements are logically equivalent.

Negating Statements

We negate a statement by using the following formulas/rules:

1.
$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

2. $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$
3. $\neg (P \Rightarrow Q) \Leftrightarrow P \land \neg Q$
4. $\neg ((\forall x) R(x)) \Leftrightarrow (\exists x) \neg R(x)$
5. $\neg ((\exists x) R(x)) \Leftrightarrow (\forall x) \neg R(x)$

Note that in negation, we switch *and* (\land) and *or* (\lor) and *for every* (\forall) and *there exists* (\exists).

Example. Show the negation of $(\forall x \in F) [x \neq 0 \Rightarrow (\exists y \in F) (y \neq 0 \land x \cdot y = 1)]$ and simplify so that the formula does not include the negation symbol \neg .

Solution.

$$\neg \left\{ (\forall x \in F) \left[x \neq 0 \Rightarrow ((\exists y \in F)(y \neq 0 \land x \cdot y = 1)) \right] \right\}$$

$$(\exists x \in F) \neg \left[x \neq 0 \Rightarrow ((\exists y \in F)(y \neq 0 \land x \cdot y = 1)) \right]$$

$$(\exists x \in F) \left[x \neq 0 \land \neg ((\exists y \in F)(y \neq 0 \land x \cdot y = 1)) \right]$$

$$(\exists x \in F) \left[x \neq 0 \land ((\forall y \in F) \neg (y \neq 0 \land x \cdot y = 1)) \right]$$

$$(\exists x \in F) \left[x \neq 0 \land ((\forall y \in F)(y = 0 \lor x \cdot y \neq 1)) \right]$$

Example. Compute the negative of $(\exists x \in \mathbb{R})(((\forall y \in \mathbb{R})(y^2 \neq x))) \lor (x \ge 0))$ without using the \neg symbol.

Solution.

$$\neg \left\{ (\exists x \in \mathbb{R}) \left(\left((\forall y \in \mathbb{R}) (y^2 \neq x) \right) \lor (x \ge 0) \right) \right\} \\ (\forall x \in \mathbb{R}) \neg \left(\left((\forall y \in \mathbb{R}) (y^2 \neq x) \right) \lor (x \ge 0) \right) \\ (\forall x \in \mathbb{R}) \left(\neg \left((\forall y \in \mathbb{R}) (y^2 \neq x) \right) \land \neg (x \ge 0) \right) \\ (\forall x \in \mathbb{R}) \left(\left((\exists y \in \mathbb{R}) \neg (y^2 \neq x) \right) \land (x < 0) \right) \\ (\forall x \in \mathbb{R}) \left(\left((\exists y \in \mathbb{R}) (y^2 = x) \right) \land (x < 0) \right) \right\}$$