TheRobert Gillespie ACADEMIC SKILLS

Bijections

Injection:

A function $f: A \rightarrow B$ is an injection when different inputs are always mapped to different outputs, that is, $x \neq y \Rightarrow f(x) \neq f(y)$.

In practice we normally use the contrapositive ($f(x)=f(y) \Rightarrow x=y$) as it is generally easier to prove.

To show a function is not injective, we must show a counterexample. We would need two different inputs $x_{1} \neq x_{2}$ so that their outputs are the same $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Surjection:

A function $f: A \rightarrow B$ is a surjection if every element of the codomain B is mapped onto. In other words, for any $b \in B$ we can find at least one $a \in A$ so that $f(a)=b$. One way to do this is to:

1. Pick an arbitrary element of the codomain (let $b \in B$, without specifying anything else about it).
2. Look for $a \in A$ so that $f(a)=b$ (do this by plugging in x into f, set $f(x)=b$ and solve for x in terms of b).
3. Confirm that plugging in this x into f actually does output b, as well as making sure that $x \in A$.

Another way is to prove that the image of f is equal to the codomain, i.e.,

$$
\operatorname{im}(f)=B
$$

To show a function is not a surjection, we again must find a counterexample. That would be finding $b \in B$ so that it isn't possible that $f(a)=b$ for any $a \in A$.

Bijection:

A bijection is a function $f: A \rightarrow B$ which is both injective and surjective.
Bijections can be reversed, if f is a bijection then there is a function $f^{-1}: B \rightarrow A$ (called the inverse function of f) which undoes what f does.

Formally,

$$
f(a)=b \text { if and only if } f^{-1}(b)=a
$$

This is demonstrated in the fact that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$. It is useful to note that f^{-1} is also a bijection.

Example. Determine whether the following functions are injective, surjective, bijective or neither.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\left\{\begin{array}{cc}-\frac{1}{x} ; & x<0 \\ -x^{2}+1 ; & x \geq 0\end{array}\right.$
(b) $\quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(a, b)=a \cdot b$

Solution Part (a).

Since we have a piecewise function, we must handle it slightly differently.

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0

For surjectivity, we must show the combined images of each part are equal to the codomain \mathbb{R}. For injectivity, we must show that each function is injective as well as show that $-\frac{1}{x_{1}} \neq-x_{2}^{2}+1$, that is, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

We will test surjection first:

First, take $x<0$, so $f(x)=-\frac{1}{x}$. We want to build up $-\frac{1}{x}$ within the $x<0$ inequality:

$$
x<0 \Rightarrow \frac{1}{x}<0 \Rightarrow-\frac{1}{x}>0 \Rightarrow f(x)>0
$$

Therefore, the image of f when $x<0$ is $(0, \infty)$.
Now for the second part, we begin with $x \geq 0$ and build up $-x^{2}+1$ within the inequality:

$$
x \geq 0 \Rightarrow x^{2} \geq 0 \Rightarrow-x^{2} \leq 0 \Rightarrow-x^{2}+1 \leq 1
$$

Thus, the image of f when $x \geq 0$ is $(-\infty, 1]$.
Putting these two together, we see that the image of f is:

$$
(0, \infty) \cup(-\infty, 1]=(-\infty, \infty)=\mathbb{R}
$$

and f is surjective.

We now test injection:

From the work on surjectivity above we see that the images of the two functions that make up f overlap. This means we should be able to find $x_{1}<0$ and $x_{2} \geq 0$ so that $f\left(x_{1}\right)=f\left(x_{2}\right)$, that is, $-\frac{1}{x_{1}}=-x_{2}^{2}+1$. One way to do this is to try guessing using "easy" numbers. For instance, when $x_{2}=0$ then $-\frac{1}{x_{1}}=-x_{2}^{2}+1$ implies $-\frac{1}{x_{1}}=1$ and $x_{1}=-1$. Done! As $f(0)=1$ and
$f(-1)=1$, we see that $f(0)=f(-1)$, however, $0 \neq-1$ so f is not injective.

Alternatively, we have to try to find these x_{1} and x_{2} to prove the function is not injective. It seems easier to solve for x_{1} :

$$
\begin{aligned}
-\frac{1}{x_{1}} & =-x_{2}^{2}+1 \\
-1 & =\left(-x_{2}^{2}+1\right) x_{1} \\
\frac{-1}{-x_{2}^{2}+1} & =x_{1}
\end{aligned}
$$

Since we said $x_{1}<0$, we can apply this to our expression: $\frac{-1}{-x_{2}{ }^{2}+1}<0$. Since the numerator is a negative, the denominator must be a positive for this to be true. That is, $-x_{2}^{2}+1>0$. We can then solve for x_{2} :

$$
-x_{2}^{2}+1>0 \Rightarrow-x_{2}^{2}>-1 \Rightarrow x_{2}^{2}<1 \Rightarrow\left|x_{2}\right|<1 \Rightarrow-1<x_{2}<1
$$

Since $x_{2} \geq 0$ this is restricted to $0 \leq x_{2}<1$. We pick a value from that range, the easiest being $x_{2}=0$ and find the respective $x_{1}: \frac{-1}{0^{2}+1}=x_{1} \Rightarrow x_{1}=-1$

From here we check their values: $f(0)=1$ and $f(-1)=1$. So $f(0)=f(-1)$, however, $0 \neq-1$ so f is not injective.

Since f is not injective, it is not bijective. Thus f is only surjective.
Solution Part (b).
We test injection:

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

One way is to ask the following question: can we find two different pairs of numbers, which, when multiplied, give the same number? Start, for instance, with $f(2,4)=2 \cdot 4=8$. Now we need a different pair whose product is 8 ; there are many such pairs, for instance, $f(1,8)=1 \cdot 8=8$. Thus, f is not injective.

Alternatively: we would like to prove that for $(a, b),(c, d) \in \mathbb{R}$ we have:

$$
f(a, b)=f(c, d) \Rightarrow(a, b)=(c, d)
$$

i.e., that $a=c$ and $b=d$. So, we will try to prove it. We assume $f(a, b)=f(c, d)$, this would mean $a b=c d$. This doesn't give us much, as we cannot conclude that $a=c$ and $b=d$. Therefore, we look for a counterexample:

$$
f(2,6)=2 \cdot 6=12 \text { and } f(3,4)=3 \cdot 4=12 .
$$

Meanwhile, $(2,6) \neq(3,4)$. Therefore, f is not injective.

Testing surjection:

We pick an arbitrary element of the codomain, let $r \in \mathbb{R}$. We must find $(a, b) \in \mathbb{R}^{2}$ such that $f(a, b)=r$, so we expand the function: $a b=r$. It will be hard to find two variables in one equation so we "fix" one of them to make our work easier; let $b=1$ and we try to find a to make the equation work:

$$
\begin{aligned}
a b & =r \\
a(1) & =r \\
a & =r
\end{aligned}
$$

This tells us $(1, r)$ satisfies our requirement, we confirm it: $f(1, r)=1 \cdot r=r$. Since we were able to find $(a, b) \in \mathbb{R}^{2}$ so that $f(a, b)=r$ for arbitrary $r \in \mathbb{R}$, f is a surjective function.

Because it is not injective, f is not bijective.
ccommons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

