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Bijections 
 
 
 

 
 
Injection: 
 
A function  is an injection when different inputs are always mapped 
to different outputs, that is, .  
 
In practice we normally use the contrapositive ( ) as it is 
generally easier to prove. 
 
To show a function is not injective, we must show a counterexample. We would 
need two different inputs  so that their outputs are the same 

.  
 
Surjection: 
 
A function  is a surjection if every element of the codomain  is 
mapped onto. In other words, for any  we can find at least one   so 
that . One way to do this is to: 
 

1. Pick an arbitrary element of the codomain (let , without   
  specifying anything else about it). 

2. Look for  so that  (do this by plugging in  into ,  
  set  and solve for  in terms of ). 

3. Confirm that plugging in this  into  actually does output , as  
  well as making sure that . 
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Another way is to prove that the image of  is equal to the codomain, i.e., 

 
 
To show a function is not a surjection, we again must find a counterexample. That 
would be finding  so that it isn’t possible that  for any . 
 
 
Bijection: 
 
A bijection is a function  which is both injective and surjective. 
Bijections can be reversed, if  is a bijection then there is a function 

 (called the inverse function of ) which undoes what  does.  
 
Formally, 

  if and only if  
 
This is demonstrated in the fact that  and . It is 

useful to note that  is also a bijection. 
 
Example.  Determine whether the following functions are injective, surjective,  
  bijective or neither.  

  (a) ,       

  (b) ,    
 
Solution Part (a). 
Since we have a piecewise function, we must handle it slightly differently.  
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For surjectivity, we must show the combined images of each part are equal to the 
codomain . For injectivity, we must show that each function is injective as well 

as show that , that is, . 

 
We will test surjection first: 

First, take , so . We want to build up  within the  

inequality: 

 

Therefore, the image of  when  is . 

Now for the second part, we begin with  and build up  within the 
inequality: 

 
 
Thus, the image of  when  is . 
 
Putting these two together, we see that the image of  is: 

 
and  is surjective. 
 
We now test injection: 
From the work on surjectivity above we see that the images of the two functions 
that make up  overlap. This means we should be able to find  and 

 so that , that is, . One way to do this is 

to try guessing using “easy” numbers. For instance, when  then 

 implies 
 
and . Done! As  and 
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, we see that  , however,  so  is not 
injective.  
 
Alternatively, we have to try to find these  and  to prove the function is not 

injective. It seems easier to solve for : 

 

Since we said , we can apply this to our expression: . Since 

the numerator is a negative, the denominator must be a positive for this to be 

true. That is, . We can then solve for : 

 

 
Since  this is restricted to . We pick a value from that range, 

the easiest being  and find the respective :  

 
From here we check their values:  and . So  , 
however,  so  is not injective. 
 
Since  is not injective, it is not bijective. Thus  is only surjective. 
 
Solution Part (b). 
 
We test injection: 
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One way is to ask the following question: can we find two different pairs of 
numbers, which, when multiplied, give the same number? Start, for instance, with 

. Now we need a different pair whose product is 8; there are 
many such pairs, for instance,  . Thus,  is not injective.  
 
Alternatively: we would like to prove that for  we have: 

 
i.e., that  and . So, we will try to prove it. We assume 

, this would mean . This doesn’t give us much, as we 
cannot conclude that  and .. Therefore, we look for a 
counterexample:  

 and . 
 
Meanwhile, . Therefore,  is not injective. 
Testing surjection: 
We pick an arbitrary element of the codomain, let . We must find 

 such that , so we expand the function: . It will 
be hard to find two variables in one equation so we “fix” one of them to make our 
work easier; let  and we try to find  to make the equation work: 

 

 
This tells us  satisfies our requirement, we confirm it: . 

Since we were able to find  so that  for arbitrary , 

 is a surjective function.  
 
Because it is not injective,  is not bijective.     u 
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