TheRobert Gillespie ACADEMIC SKILLS CENTRE

Determinant of a Matrix

The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\operatorname{det}(A)=a d-b c$. For example, $\operatorname{det}\left(\left[\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right]\right)=(1)(-4)-(3)(-2)=-4+6=2$.

In general, for an $n \times n$ matrix A with $n \geq 2$, we use the cofactor expansion:

1. Choose a column or row, preferably the one with the most 1 s and 0 s .
2. For the entry $a_{i j}$, let $A_{i j}$ denote the matrix obtained by deleting row i and column j.
3. Calculate $c_{i j}(A)=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$, this is called the (i, j) cofactor. You can use this diagram to find $(-1)^{i+j}$ for each entry:

$$
\left[\begin{array}{cccc}
+ & - & + & \cdots \\
- & + & - & \cdots \\
+ & - & + & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

4. Repeat steps 2 and 3 for each entry in the row/column you chose.
5. Multiply each cofactor by its corresponding entry, then add them all together. Here is the determinant of A using the first row:

$$
\operatorname{det}(A)=a_{11} c_{11}(A)+a_{12} c_{12}(A)+a_{13} c_{13}(A)+\ldots+a_{1 n} c_{1 n}(A)
$$

Commons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

Keep in mind if any of the $a_{11}, \ldots, a_{1 n}$ is 0 , then the corresponding term $a_{i j} c_{i j}(A)$ disappears, so there is no need to calculate the cofactor! For example, the determinant of a 3×3 matrix $B=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ using Row 1:

$$
\begin{aligned}
\operatorname{det}(B) & =a \operatorname{det}\left(\left[\begin{array}{ll}
e & f \\
h & i
\end{array}\right]\right)-b \operatorname{det}\left(\left[\begin{array}{ll}
d & f \\
g & i
\end{array}\right]\right)+c \operatorname{det}\left(\left[\begin{array}{ll}
d & e \\
g & h
\end{array}\right]\right) \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g)
\end{aligned}
$$

Example. Find the determinant of the following matrices.
(a) $M=\left[\begin{array}{lll}1 & 4 & 1 \\ 2 & 7 & 1 \\ 3 & 1 & 4\end{array}\right]$
(b) $M=\left[\begin{array}{lll}9 & 9 & 4 \\ 0 & 2 & 0 \\ 1 & 3 & 2\end{array}\right]$

Solution Part (a).

We will find the determinant using Column 3 , since it has two 1 s. Here are the calculations for the cofactors:

$$
\begin{aligned}
& c_{13}(M)=(-1)^{1+3} \operatorname{det}\left(\left[\begin{array}{ll}
2 & 7 \\
3 & 1
\end{array}\right]\right)=(1)(2-21)=-19 \\
& c_{23}(M)=(-1)^{2+3} \operatorname{det}\left(\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right]\right)=(-1)(1-12)=11 \\
& c_{33}(M)=(-1)^{3+3} \operatorname{det}\left(\left[\begin{array}{ll}
1 & 4 \\
2 & 7
\end{array}\right]\right)=(1)(7-8)=-1
\end{aligned}
$$

[^0] License. To view a copy of this license, visit hittp://creativecommons.org/licenses/by-nc-sa/4.0.

Now, we can calculate the determinant:

$$
\begin{aligned}
\operatorname{det}(M) & =a_{13} c_{13}(M)+a_{23} c_{23}(M)+a_{33} c_{33}(M) \\
& =(1)(-19)+(1)(11)+(4)(-1) \\
& =-9
\end{aligned}
$$

Solution Part (b).

Since Row 2 has two 0s we will use that row, it will make the calculation much easier. We will only calculate the (2,2)-cofactor since the other two aren't needed:

$$
c_{22}(M)=(-1)^{2+2} \operatorname{det}\left(\left[\begin{array}{ll}
9 & 4 \\
1 & 2
\end{array}\right]\right)=(1)(18-4)=14
$$

Calculating the determinant, we get:

$$
\begin{aligned}
\operatorname{det}(M) & =(0) c_{21}(M)+(2) c_{22}(M)+(0) c_{23}(M) \\
& =(0)(0)+(2)(14)+(0)(0)=28
\end{aligned}
$$

[^0]: cc Creative
 cc. Commons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

