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Stokes’ Theorem 

 
 
 
 

 
Parametric Surfaces 

Just as a curve can be described as a vector function  of a single parameter , a 
surface can be described by a vector function  of two parameters  and , that 
is 

  

is a vector-valued function defined on a region  in the -plane.  The component 
functions , , and  of  are functions of two variables  and  with domain 
.  The set of all points  in  such that 

  

and  varies throughout  is called a parametric surface .  The parametric 
equations of  are (1). 

 
Normal Vector to a Surface 

Say that a vector  is tangent to a surface  at the point  if  is a tangent vector, at 
, to some curve that is contained in .  This is analogous to the tangent line of a 

single variable function. 

Assume that a surface  is represented by  , where

.  At a point on the surface , there exists the following two tangent 
vectors,  and	 , given by	
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being the partial derivatives of the components , , and  
with respect to u, and 

 	

being the partial derivatives of the components , , and  
with respect to . 

The vector , being perpendicular to both  and 
 is called a normal vector.  The normal vector is computed by 

  

	 

where we have dropped explicit reference to the point . 

 
Stokes’ Theorem 

Let  be an oriented piecewise-smooth surface that is bounded by a simple, closed, 
piecewise boundary curve  with positive orientation.  Let  be a vector field whose 
components have continuous partial derivatives on an open region in  that contains 

.  Then 

. 

The positively oriented boundary curve of the oriented surface  is often written as 
.  Then, Stokes’ Theorem can be expressed as 

. 

The left side of the equation involves an integral involved with derivatives because of 
, and the right side has the values of  at the boundary of . 

In a special case where the surface  is flat and lies in the -plane with upward 
orientation, the unit normal is , the surface integral becomes a double integral, and 
Stokes’ Theorem becomes 
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Example 1.  Let  be the circle  and , oriented counterclockwise as seen 
from a point  with  on the -axis.  For	 , compute . 

	

Solution.  Calculating directly, we parametrize  by  where 

.  Then    We then obtain 

  

using the fact that	 .	

Alternatively, we can solve this problem using Stokes’ Theorem:  

  

We first calculate the curl: 
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The surface bounded by	  is the disk given by  and .  We can 
parameterize this surface by  , for .  We can then calculate the 
tangent and normal vectors: 

  

  

. 

Now, we have shown the surface is flat and lies in the -plane with upward orientation, 
so Stokes’ Theorem becomes 

  

Hence, we have 

  

 

Example 2.  Let  be the interior of the unit sphere, i.e. .  Compute 
, where  

Solution.  We use spherical coordinates to write  in terms of two variables. 

  

where .  The parametric representation of the surface  is given by 

  

and the tangent and normal vectors are given by 

2

curl 2 .

2

i j k

F yi k
x y z

x y

¶ ¶ ¶
= = +
¶ ¶ ¶

C 2 2 1x y+ £   1 z=
( ), , ,1r u v u v= 2 2 1u v+ £

, , 1,0,0 ,u
x y zT
u u u
¶ ¶ ¶

= =
¶ ¶ ¶

, , 0,1,0 ,y
x y zT
v v v
¶ ¶ ¶

= =
¶ ¶ ¶

1 0 0
0 1 0

u v

i j k
N T T k= ´ = =

xy

curl curl .F dr F dS F NdA× = × = ×òC S S
∬ ∬

( )2 2 2 21 1
curl 2 1  π.

u v u v
F dr F dS yi k kdA dA

+ £ + £
× = × = + × = =òC S

∬ ∬ ∬

S 2 2 2 1x y z+ + £
curlF dS×òòòS ( ), , .F x y z zi yj xk= + +

F

sinθcos , sinθsin , cosθ, 0 θ π, 0 2π,x r y r z rf f f= = = £ £ £ <

 1 r = 2 2 2 1x y z+ + =

( )θ, sinθcos sinθsin cosθr i j kf f f= + +



 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0. 

 

  

Finally, applying Stokes’ Theorem, we obtain 

  

where we use the -substitution  and the fact that . 
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