TheRobert Gillespie ACADEMIC SKILLS CENTRE

Stokes' Theorem

Parametric Surfaces

Just as a curve can be described as a vector function $\bar{r}(t)$ of a single parameter t, a surface can be described by a vector function $\bar{r}(u, v)$ of two parameters u and v, that is

$$
\bar{r}(u, v)=x(u, v) \bar{i}+y(u, v) \bar{j}+z(u, v) \bar{k}
$$

is a vector-valued function defined on a region D in the $u v$-plane. The component functions x, y, and z of $\bar{r}(u, v)$ are functions of two variables u and v with domain D . The set of all points (x, y, z) in R^{3} such that

$$
\begin{equation*}
x=x(u, v), \quad y=y(u, v), \quad z=z(u, v) \tag{1}
\end{equation*}
$$

and (u, v) varies throughout D is called a parametric surface S . The parametric equations of S are (1).

Normal Vector to a Surface

Say that a vector \bar{v} is tangent to a surface S at the point P if \bar{v} is a tangent vector, at P, to some curve that is contained in S . This is analogous to the tangent line of a single variable function.

Assume that a surface S is represented by $\bar{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$, where $(u, v) \in D \subseteq \mathrm{R}^{2}$. At a point on the surface $\left(u_{0}, v_{0}\right)$, there exists the following two tangent vectors, $\bar{T}_{u}\left(u_{0}, v_{0}\right)$ and $\bar{T}_{v}\left(u_{0}, v_{0}\right)$, given by

$$
\bar{T}_{u}\left(u_{0}, v_{0}\right)=\left\langle\left.\frac{\partial x}{\partial u}\right|_{\left(u_{0}, v_{0}\right)},\left.\frac{\partial y}{\partial u}\right|_{\left(u_{0}, v_{0}\right)},\left.\frac{\partial z}{\partial u}\right|_{\left(u_{0}, v_{0}\right)}\right\rangle,
$$

being the partial derivatives of the components $x=x(u, v), y=y(u, v)$, and $z=z(u, v)$ with respect to u, and

$$
\bar{T}_{v}\left(u_{0}, v_{0}\right)=\left\langle\left.\frac{\partial x}{\partial v}\right|_{\left(u_{0}, v_{0}\right)},\left.\frac{\partial y}{\partial v}\right|_{\left(u_{0}, v_{0}\right)},\left.\frac{\partial z}{\partial v}\right|_{\left(u_{0}, v_{0}\right)}\right\rangle,
$$

being the partial derivatives of the components $x=x(u, v), y=y(u, v)$, and $z=z(u, v)$ with respect to v.

The vector $\bar{N}\left(u_{0}, v_{0}\right)=\bar{T}_{u}\left(u_{0}, v_{0}\right) \times \bar{T}_{v}\left(u_{0}, v_{0}\right)$, being perpendicular to both $\bar{T}_{u}\left(u_{0}, v_{0}\right)$ and $\bar{T}_{v}\left(u_{0}, v_{0}\right)$ is called a normal vector. The normal vector is computed by

$$
\bar{N}=\bar{T}_{u} \times \bar{T}_{v}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{array}\right| .
$$

where we have dropped explicit reference to the point $\left(u_{0}, v_{0}\right)$.

Stokes' Theorem

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise boundary curve C with positive orientation. Let \bar{F} be a vector field whose components have continuous partial derivatives on an open region in R^{3} that contains S . Then

$$
\int_{\mathrm{C}} \bar{F} \cdot d \bar{r}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S} .
$$

The positively oriented boundary curve of the oriented surface S is often written as $\partial \mathrm{S}$. Then, Stokes' Theorem can be expressed as

$$
\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S}=\int_{\partial \mathrm{S}} \bar{F} \cdot d \bar{r} .
$$

The left side of the equation involves an integral involved with derivatives because of $\operatorname{curl} \bar{F}$, and the right side has the values of \bar{F} at the boundary of S .

In a special case where the surface S is flat and lies in the $x y$-plane with upward orientation, the unit normal is \bar{N}, the surface integral becomes a double integral, and Stokes' Theorem becomes

Commons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

$$
\int_{\mathrm{C}} \bar{F} \cdot d \bar{r}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot \bar{N} d A
$$

Example 1. Let C be the circle $x^{2}+y^{2}=1$ and $z=1$, oriented counterclockwise as seen from a point $(0,0, z)$ with $z>1$ on the z-axis. For $\bar{F}=2 \bar{i}+x \bar{j}+y^{2} \bar{k}$, compute $\int_{\mathrm{C}} \bar{F} \cdot d \bar{r}$.

Solution. Calculating directly, we parametrize C by $\bar{r}=\langle\cos t, \sin t, 1\rangle$ where $t \in[0,2 \pi)$. Then $\overline{r^{\prime}}(t)=\langle-\sin (t), \cos (t), 0\rangle$ We then obtain

$$
\begin{aligned}
\int_{C} \bar{F} \cdot d \bar{r} & =\int_{C} \bar{F}(\bar{r}(t)) \cdot \bar{r}(t) d t \\
& =\int_{0}^{2 \pi}\left\langle 2, \cos (t), \sin ^{2}(t)\right\rangle \cdot\langle-\sin (t), \cos (t), 0\rangle d t \\
& =\int_{0}^{2 \pi}\left(-2 \sin (t)+\cos ^{2}(t)\right) d t \\
& =\int_{0}^{2 \pi}\left(-2 \sin (t)+\frac{1}{2}+\frac{1}{2} \cos (2 t)\right) d t \\
& =\left[2 \cos (t)+\frac{1}{2} t+\frac{1}{4} \sin (2 t)\right]_{0}^{2 \pi}=\pi
\end{aligned}
$$

using the fact that $\cos ^{2}(t)=\frac{1}{2}+\frac{1}{2} \cos (2 t)$.
Alternatively, we can solve this problem using Stokes' Theorem:

$$
\int_{\mathrm{C}} \bar{F} \cdot d \bar{r}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S}
$$

We first calculate the curl:

$$
\operatorname{curl} \bar{F}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 & x & y^{2}
\end{array}\right|=2 y \bar{i}+\bar{k}
$$

The surface bounded by C is the disk given by $x^{2}+y^{2} \leq 1$ and $z=1$. We can parameterize this surface by $\bar{r}(u, v)=\langle u, v, 1\rangle$, for $u^{2}+v^{2} \leq 1$. We can then calculate the tangent and normal vectors:

$$
\begin{aligned}
& \bar{T}_{u}=\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle=\langle 1,0,0\rangle, \\
& \bar{T}_{y}=\left\langle\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right\rangle=\langle 0,1,0\rangle, \\
& \bar{N}=\bar{T}_{u} \times \bar{T}_{v}=\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=\bar{k} .
\end{aligned}
$$

Now, we have shown the surface is flat and lies in the $x y$-plane with upward orientation, so Stokes' Theorem becomes

$$
\int_{\mathrm{C}} \bar{F} \cdot d \bar{r}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot \bar{N} d A
$$

Hence, we have

$$
\int_{\mathrm{C}} \bar{F} \cdot d \bar{r}=\iint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S}=\iint_{u^{2}+\nu^{2} \leq 1}(2 y \bar{i}+\bar{k}) \cdot \bar{k} d A=\iint_{u^{2}+\nu^{2} \leq 1} 1 d A=\pi .
$$

Example 2. Let S be the interior of the unit sphere, i.e. $x^{2}+y^{2}+z^{2} \leq 1$. Compute $\iiint_{\mathrm{S}} \operatorname{curl} \bar{F} \cdot d \bar{S}$, where $\bar{F}(x, y, z)=z \bar{i}+y \bar{j}+x \bar{k}$.

Solution. We use spherical coordinates to write \bar{F} in terms of two variables.

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi<2 \pi,
$$

where $r=1$. The parametric representation of the surface $x^{2}+y^{2}+z^{2}=1$ is given by

$$
\bar{r}(\theta, \phi)=\sin \theta \cos \phi \bar{i}+\sin \theta \sin \phi \bar{j}+\cos \theta \bar{k}
$$

and the tangent and normal vectors are given by

$$
\begin{aligned}
& \bar{T}_{\theta}=\frac{\partial x}{\partial \theta} \bar{i}+\frac{\partial y}{\partial \theta} \bar{j}+\frac{\partial z}{\partial \theta} \bar{k}=\cos \theta \cos \phi \bar{i}+\cos \theta \sin \phi \bar{j}-\sin \theta \bar{k}, \\
& \bar{T}_{\phi}=\frac{\partial x}{\partial \phi} \bar{i}+\frac{\partial y}{\partial \phi} \bar{j}+\frac{\partial z}{\partial \phi} \bar{k}=-\sin \theta \sin \phi \bar{i}+\sin \theta \cos \phi \bar{j}, \\
& \bar{N}=\bar{T}_{\theta} \times \bar{T}_{\phi}=\sin ^{2} \theta \cos \phi \bar{i}+\sin ^{2} \theta \sin \phi \bar{j}+\sin \theta \cos \theta \bar{k} .
\end{aligned}
$$

Finally, applying Stokes' Theorem, we obtain

$$
\begin{aligned}
& \iiint_{S} \operatorname{cur} \bar{F} \cdot d \bar{S}=\iint_{\partial S} \bar{F} \cdot d \bar{r}=\iint_{\partial S} \bar{F} \cdot \bar{N} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}(\cos \theta \bar{i}+\sin \theta \sin \phi \bar{j}+\sin \theta \cos \phi \bar{k}) \cdot\left(\sin ^{2} \theta \cos \phi \bar{i}+\sin ^{2} \theta \sin \phi \bar{j}+\sin \theta \cos \theta \bar{k}\right) d \theta d \phi \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}\left(2 \sin ^{2} \theta \cos \theta \cos \phi+\sin ^{3} \theta \sin ^{2} \phi\right) d \theta d \phi \\
& =2 \int_{0}^{\pi} \sin ^{2} \theta \cos \theta d \theta \int_{0}^{2 \pi} \cos \phi d \phi+\int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{2 \pi} \sin ^{2} \phi d \phi \\
& =2 \int_{0}^{\pi} \sin ^{2} \theta \cos \theta d \theta[\sin \phi]_{0}^{2 \pi}+\int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta \int_{0}^{2 \pi} \frac{1}{2}(1-\cos (2 \phi)) d \phi \\
& =0-\int_{1}^{-1}\left(1-u^{2}\right) d u \times\left[\frac{1}{2} t-\frac{1}{4} \sin (2 \phi)\right]_{0}^{2 \pi} \\
& =\left[u-u^{3}\right]_{-1}^{1} \times \pi=\frac{4}{3} \pi,
\end{aligned}
$$

where we use the u-substitution $u=\cos \theta$ and the fact that $\sin ^{2}(t)=\frac{1+\cos (2 t)}{2}$.

