TheRobert Gillespie ACADEMIC SKILLS CENTRE

 Partial Derivatives, Gradient, Divergence, and Curl
Partial Derivatives

Recall that the derivative of a function of one variable provides information about how the function changes as the input variable changes. For a function of multiple variables, we consider how the function changes when one input variable changes and all other input variables are fixed, and refer to partial derivatives. For example, if f is a function of two variables x and y, then its partial derivatives are the functions f_{x} and f_{y}, which are defined by

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \text { and } f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

provided that the limit(s) exist.

Notation for Partial Derivatives

For a function $z=f(x, y)$, all of the following notation is used to represent partial derivatives.

$$
\begin{aligned}
& f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f \\
& f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f
\end{aligned}
$$

Rule for Finding Partial Derivatives of $z=f(x, y)$

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

Partial derivatives are similarly defined for functions of three or more variables.

Higher Order Derivatives

For higher order derivatives, we take derivatives one order at a time. For a function $z=f(x, y)$, we use the notation

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

The notation is similar for higher order partial derivatives.

Clairaut's Theorem

Suppose that f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$. In essence, if f is a "nice" function, then a mixed partial derivative is independent of the order we take the derivatives, i.e. $f_{x y}=f_{y x}$.

Del Operator

The del operator is denoted as ∇ which is called nabla. The del operator is a vector written as

$$
\nabla=\left(\frac{\partial}{\partial x}\right) \bar{i}+\left(\frac{\partial}{\partial y}\right) \bar{j}+\left(\frac{\partial}{\partial z}\right) \bar{k}
$$

Basically, the presence of the ∇ tells us we are taking a derivate, which takes several forms, each of which gives different results!

- If f is a function, then ∇f (gradient) is a vector.
- If \bar{F} is a vector field, then $\nabla \cdot \bar{F}$ (divergence) is a scalar function.
- If \bar{F} is a vector field, then $\nabla \times \bar{F}$ (curl) is a vector function.

We will consider each of these forms below.

Gradient

If f is a function of two variables x and y, then the gradient of f is the vector ∇f defined by

$$
\operatorname{grad} f(x, y)=\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \bar{i}+\frac{\partial f}{\partial y} \bar{j}
$$

where \bar{i} and \bar{j} are unit vectors.
The gradient of a function is similarly defined for functions of three or more variables. We think of the gradient of a function of two or more variables as the direction of the fastest increase of f at a point, with magnitude equal to the maximum rate of increase at a point - just as we do for the derivative of a single-variable function. Geometrically, the gradient at a point is perpendicular to the tangent vector of any curve that passes through the point.

Example. If $f(x, y)=2 x^{2} y^{3}-4 y+5$, find the gradient at the point $(2,-1)$.
Solution. Taking the required partial derivatives, we obtain

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\left\langle 4 x y^{3}, 6 x^{2} y^{2}-4\right\rangle .
$$

Plugging in the point $(2,-1)$, we obtain

$$
\nabla f(2,-1)=\left\langle 4(2)(-1)^{3}, 6(2)^{2}(-1)^{2}-4\right\rangle=\langle-8,20\rangle .
$$

Divergence

If $\bar{F}=P \bar{i}+Q \bar{j}+R \bar{k}$, where P, Q, and R are functions, is a vector field on R^{3}, and $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, and $\frac{\partial R}{\partial z}$ exist, then the divergence of \bar{F} is defined by

$$
\nabla \cdot \bar{F}=\operatorname{div} \bar{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

The divergence of a function is similarly defined for functions of an arbitrary number of variables.

In essence, the divergence is the dot product of the del operator ∇ and the vector field \bar{F} which results in a scalar function.

Example. If $\bar{F}=x z \bar{i}+x y z \bar{j}$, then find $\nabla \cdot \bar{F}$.
Solution. We note that $R=0$. Applying the definition, we obtain

$$
\nabla \cdot \bar{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\frac{\partial}{\partial x}(x z)+\frac{\partial}{\partial y}(x y z)+\frac{\partial}{\partial z}(0)=z+x z .
$$

Curl

If $\bar{F}=P \bar{i}+Q \bar{j}+R \bar{k}$, where P, Q, and R are functions, is a vector field on R^{3}, and $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, and $\frac{\partial R}{\partial z}$ exist, then the curl of \bar{F} is defined by

$$
\nabla \times \bar{F}=\operatorname{curl} \bar{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \bar{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \bar{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \bar{k}
$$

Or equivalently, $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right|$.
The curl of a function is not defined for functions with a different number of variables; it only applies to 3-dimensional space.

In essence, the curl is the cross product of the del operator ∇ and the vector field \bar{F} which results in a vector field.

Geometrically, the curl of \bar{F} is a vector that is perpendicular to the vector field that represents the velocity of a particle in motion. Its length and direction characterize the rotation at a particular point.

Example. If $\bar{F}=x y z^{2} \bar{i}-x^{2} y \bar{j}+x^{2} y z^{3} \bar{k}$, then find $\nabla \times \bar{F}$.
Solution. Applying the definition, we obtain

$$
\begin{aligned}
\nabla \times \bar{F} & =\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y z^{2} & -x^{2} y & x^{2} y z^{3}
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y} x^{2} y z^{3}-\frac{\partial}{\partial z}\left(-x^{2} y\right)\right) \bar{i}+\left(\frac{\partial}{\partial z} x y z^{2}-\frac{\partial}{\partial x} x^{2} y z^{3}\right) \bar{j}+\left(\frac{\partial}{\partial x}\left(-x^{2} y\right)-\frac{\partial}{\partial y} x y z^{2}\right) \bar{k} \\
& =\left(x^{2} z^{3}\right) \bar{i}+\left(2 x y z-2 x y z^{3}\right) \bar{j}+\left(-2 x y-x z^{2}\right) \bar{k} .
\end{aligned}
$$

Fun Facts:

Theorem. If f is a function of three variables that has continuous second-order partial derivatives, then

$$
\nabla \times \nabla f=\operatorname{curl}(\nabla f)=\overline{0} .
$$

It follows that if \bar{F} is conservative, meaning there is a function f such that $\bar{F}=\nabla f$, then

$$
\nabla \times \bar{F}=\operatorname{curl}(\bar{F})=\overline{0} .
$$

Theorem. If $\bar{F}=P \bar{i}+Q \bar{j}+R \bar{k}$ is a vector field on R^{3} that has continuous second-order partial derivatives, then

$$
\nabla \cdot(\nabla \times \bar{F})=\operatorname{div} \operatorname{curl} \bar{F}=0
$$

Proof.

$$
\begin{aligned}
\nabla \cdot(\nabla \times \bar{F}) & =\nabla \cdot\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\nabla \cdot\left(\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \bar{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \bar{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \bar{k}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)+\frac{\partial}{\partial z}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \\
& =\frac{\partial^{2} R}{\partial x \partial y}-\frac{\partial^{2} Q}{\partial x \partial z}+\frac{\partial^{2} P}{\partial y \partial z}-\frac{\partial^{2} R}{\partial y \partial z}+\frac{\partial^{2} Q}{\partial z \partial x}-\frac{\partial^{2} P}{\partial z \partial x}=0,
\end{aligned}
$$

since mixed partial derivatives do not depend on the order of the variables.

