TheRobert Gillespie ACADEMIC CKILLS

Integrals Over Curves

Assume that C is a (smooth) curve in a plane or space that is parameterized by the vector function $\bar{l}(t)=\langle x(t), y(t), z(t)\rangle$, where $t \in[a, b]$. (Note that if C is a curve in a plane, then we drop the third component $z(t)$.

Remember that line integrals and path integrals are equivalent.

What does $\int_{\mathrm{C}} d l$ mean?

The integral $\int_{\mathrm{C}} d l$ is a line integral of a scalar function $f(x, y)=1$ or $f(x, y, z)=1$, and represents the length of C.

To compute $\int_{\mathrm{C}} d l$

- \quad In R^{2} (a plane),

$$
\int_{\mathrm{C}} d l=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=\int_{a}^{b}\left|\overline{l^{\prime}}(t)\right| d t .
$$

- $\ln \mathrm{R}^{3}$ (space),

$$
\int_{\mathrm{C}} d l=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t=\int_{a}^{b}\left|\overline{l^{\prime}}(t)\right| d t
$$

What does $\int_{\mathrm{C}} d \bar{l}$ mean?

The line integral $\int_{\mathrm{C}} d \bar{l}$ is the displacement vector of the curve / path $\bar{l}(t)$. By definition

$$
\int_{\mathrm{C}} d \bar{l}=\int_{a}^{b} \overline{l^{\prime}}(t) d t
$$

where $\overline{l^{\prime}}(t)$ is the tangent vector to the trajectory of a particle (or object) represented as a vector function $\bar{l}(t)$.

The total distance along the curve $\bar{l}(t)$ is calculated by $\int_{\mathrm{C}}\left|\overline{l^{\prime}}(t)\right| d t$.
Example. If $\bar{l}(t)=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq \pi$, find the displacement of $l(t)$ and the total distance along the curve.

Solution. For the displacement of $l(t)$, we find that $\overline{l^{\prime}}(t)=\langle-\sin t, \cos t\rangle$ and calculate

$$
\int_{0}^{\pi} d \bar{l}=\int_{0}^{\pi} \overline{l^{\prime}}(t) d t=\int_{0}^{\pi}\langle-\sin t, \cos t\rangle d t=\left\langle\left.\cos t\right|_{0} ^{\pi},\left.\sin t\right|_{0} ^{\pi}\right\rangle=\langle-2,0\rangle .
$$

For the total distance along the curve, we calculate

$$
\int_{0}^{\pi}\left|\overline{l^{\prime}}(t)\right| d t=\int_{0}^{\pi}|\langle-\sin t, \cos t\rangle| d t=\int_{0}^{\pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2}} d t=\int_{0}^{\pi} 1 d t=\pi .
$$

What does $\int_{\mathrm{C}} f d s$ mean?

The integral $\int_{\mathrm{C}} f d s$ is the line integral of a continuous real-valued function $f(x, y)$ or $f(x, y, z)$, i.e., it represents the area of the region under the surface $z=f(x, y)$ along the curve $\bar{l}(t)$. We calculate as follows:

$$
\int_{\mathrm{C}} f d s=\int_{a}^{b} f(\bar{l}(t))|\bar{l}(t)| d t .
$$

What does $\int d A$ mean where A is a region in the plane.

The integral $\int d A$ is equal to the area of A.

What does $\iint_{R} f(x, y) d A$ mean?
Suppose that $f(x, y)$ is continuous on some region in the $x y$-plane. The integral $\iint_{R} f(x, y) d A$ represents the volume over the region under the surface which is defined by $z=f(x, y)$. Note that $\iint_{R} f(x, y) d A$ is evaluated as an iterated integral and thus $d A=d x d y$ or $d A=d y d x$.

What does $\int \bar{F} \cdot \boldsymbol{d} \overline{\boldsymbol{A}}$ mean?
To calculate $\int \bar{F} \cdot d \bar{A}$, we write the integral as

$$
\int \bar{F} \cdot d \bar{A}=\int \bar{F} \cdot \bar{n} d A
$$

where \bar{n} is the unit normal of the planar region A and $d A$ is a small patch of the region. Note that $d \bar{A}=\bar{n} d A$.

If \bar{F} is a constant vector field, then we can evaluate the integral as follows.

$$
\begin{array}{ll}
\int \bar{F} \cdot d \bar{A} & \\
=\int \bar{F} \cdot \bar{n} d A, & d \bar{A}=\bar{n} d A \\
=\int|\bar{F}||\bar{n}| \cos (\theta) d A, & \text { Theorem } \bar{A} \cdot \bar{B}=A B \cos (\theta) \\
=\int(F)(1) \cos (\theta) d A & \\
=F \cos (\theta) \int d A, & F \cos (\theta) \text { is a constant and } \int d A \text { is the area of } A \\
=F A \cos (\theta) &
\end{array}
$$

What does $\int_{B} f(x, y, z) d V$ mean where B is a region in space?
In general, there is no interpretation.
If $f(x, y, z)=1$, then this triple integral represents the volume of B.
If $f(x, y, z)$ represents density, then this triple integral gives the total mass of B.
This triple integral is computed as an iterated integral where $d V=d x d y d z$ (or any other order which is convenient to compute).

Line Integrals of Vector Fields (Theory)

Suppose that $\bar{F}=P \bar{i}+Q \bar{j}+R \bar{k}$ is a continuous force field on R^{3} (i.e., in 3-dimensions; thus P, Q, and R are functions of x, y, and z). Note that a force field in R^{2} (i.e. in 2dimesions) can be thought of as a special case where $R=0$ and P and Q depend only on x and y.

Now, a formula can be derived for a force \bar{F} acting upon a particle that moves along the curve C (from some initial point to some terminal point).

The force \bar{F} in moving the particle from P_{i-1} to P_{i} is approximately

$$
\bar{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot\left[\Delta s_{i} \bar{T}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)\right]=\left[\bar{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot \bar{T}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)\right] \Delta s_{i}
$$

where $\bar{T}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)$ is the unit tangent vector at a point $\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)$ between P_{i-1} and P_{i} on C (details of this will be provided in a vector calculus course; we do not have all concepts available, such as Mean Value Theorem, for a precise derivation). Here, the actual displacement Δs_{i} along C is approximated by $\Delta s_{i} \bar{T}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)$.

Moving the particle along C from the initial point to the terminal point is approximately
ccommons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

$$
\sum_{i=1}^{n}\left[\bar{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot \bar{T}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)\right] \Delta s_{i}
$$

Recall that the definition of a definite integral is:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}^{*}\right)=\int_{a}^{b} f(x) d x
$$

As n, the number of subintervals, increases, the approximation improves.
Thus, the force field \bar{F} is defined as the limit of the Riemann sums, namely,

$$
\int_{\mathrm{C}} \bar{F}(x, y, z) \cdot \bar{T}(x, y, z) d s=\int_{\mathrm{C}} \bar{F} \cdot \bar{T} d s
$$

If the curve C is given by the vector equation $\bar{l}(t)=x(t) \bar{i}+y(t) \bar{j}+z(t) \bar{k}$, where $t \in[a, b]$, then the tangent unit vector is

$$
\bar{T}(t)=\frac{\overline{l^{\prime}}(t)}{\left|\bar{l}^{\prime}(t)\right|} .
$$

Then, using the definition of a path integral and the fact that $d s=\left|\nu^{\prime}(t)\right| d t$, which follows from the fact that $\frac{d s}{d t}$ is the rate of change of the arc length over time; i.e., the speed of the particle, and since the motion of the particle is described by a position function, we obtain

$$
\int_{a}^{b}\left[\bar{F}(\bar{l}(t)) \cdot \frac{\bar{l}^{\prime}(t)}{\left|\overline{l^{\prime}}(t)\right|}\right]\left|\overline{l^{\prime}}(t)\right| d t=\int_{a}^{b} \bar{F}(\bar{l}(t)) \cdot \overline{l^{\prime}}(t) d t=\int_{a}^{b} \bar{F} \cdot d \bar{l}
$$

Example. If $\bar{F}=\langle 2 x y, y\rangle$, evaluate $\int \bar{F} \cdot d \bar{L}$ around L as shown in the figure below.

Solution. We split L into three pieces as shown and consider each integral separately.

We first consider L_{1}. We will parametrize this line by $x=2, y=t, 0 \leq t \leq 2$. Then L_{1} is given by $\bar{l}(t)=\langle 2, t\rangle, 0 \leq t \leq 2$, and $\overline{l^{\prime}}(t)=\langle 0,1\rangle$. Evaluating the integral, we obtain

$$
\int_{L_{1}} \bar{F} \cdot d \bar{l}=\int_{0}^{2} \bar{F}(\bar{l}(t)) \cdot \overline{l^{\prime}}(t) d t=\int_{0}^{2}\langle 4 t, t\rangle \cdot\langle 0,1\rangle d t=\int_{0}^{2} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{2}=2 .
$$

Now we consider L_{2}. We will parameterize this line by $x=2-t, y=2,0 \leq t \leq 2$. Then L_{2} is given by $\bar{l}(t)=\langle 2-t, 2\rangle, 0 \leq t \leq 2$, and $\overline{l^{\prime}}(t)=\langle-1,0\rangle$. Evaluating the integral, we obtain

$$
\begin{aligned}
\int_{L_{2}} \bar{F} \cdot d \bar{l} & =\int_{0}^{2} \bar{F}(\bar{l}(t)) \cdot \overline{l^{\prime}}(t) d t=\int_{0}^{2}\langle 4(2-t), 2\rangle \cdot\langle-1,0\rangle d t \\
& =\int_{0}^{2}-4(2-t) d t=-4 \int_{0}^{2}(2-t) d t=-4\left[2 t-\frac{t^{2}}{2}\right]_{0}^{2}=-8 .
\end{aligned}
$$

Finally, we consider L_{3}. We will parameterize this line by $x=2 \sin t, y=2 \cos t, 0 \leq t \leq \frac{\pi}{2}$. Then L_{3} is given by $\bar{l}(t)=\langle 2 \sin t, 2 \cos t\rangle, 0 \leq t \leq \frac{\pi}{2}$, and $\overline{l^{\prime}}(t)=\langle 2 \cos t,-2 \sin t\rangle$.
Evaluating the integral, we obtain

$$
\begin{aligned}
\int_{L_{3}} \bar{F} \cdot d \bar{l} & =\int_{0}^{\frac{\pi}{2}} \bar{F}(\bar{l}(t)) \cdot \overline{l^{\prime}}(t) d t \\
& =\int_{0}^{\frac{\pi}{2}}\langle 8 \sin t \cos t, 2 \cos t\rangle \cdot\langle 2 \cos t,-2 \sin t\rangle d t \\
& =\int_{0}^{\frac{\pi}{2}}\left(16 \sin t \cos ^{2} t-4 \sin t \cos t\right) d t
\end{aligned}
$$

We can evaluate this integral using substitution. Let $u=\cos t$, then $d u=-\sin t d t$, and we evaluate from $\cos 0=1$ to $\cos \frac{\pi}{2}=0$ and obtain

$$
\begin{aligned}
& =\int_{1}^{0}\left(-16 u^{2}+4 u\right) d u \\
& =\left[-\frac{16}{3} u^{3}+2 u^{2}\right]_{1}^{0} \\
& =\frac{16}{3}-2=\frac{10}{3}
\end{aligned}
$$

Putting it all together, we obtain

$$
\int_{L} \bar{F} \cdot d \bar{l}=\int_{L_{1}} \bar{F} \cdot d \bar{l}+\int_{L_{2}} \bar{F} \cdot d \bar{l}+\int_{L_{3}} \bar{F} \cdot d \bar{l}=2+(-8)+\frac{10}{3}=-\frac{8}{3} .
$$

