TheRobert Gillespie
 ACADEMIC
 SKILLS

Greatest Common Divisor and Bézout's Identity

Greatest Common Divisor (GCD):

The GCD of two integers a and b not both zero, as the name says, is the largest of all the divisors they have in common. If the only divisor a and b have in common is $1(\operatorname{gcd}(a, b)=1), a$ and b are said to be relatively prime.

Finding GCD using Euclidean Algorithm:

To find $\operatorname{gcd}(a, b)$, assuming $a>b$, we use the Euclidean Algorithm as follows:

1. Divide a by b with remainder: $a=b \times q_{1}+r_{1}$
2. Divide the previous divisor (b) by the previous remainder $\left(r_{1}\right)$ with remainder: $b=r_{1} \times q_{2}+r_{2}$
3. Repeat step 2 until the remainder in the division is 0 :

$$
\begin{aligned}
b & =r_{1} \cdot q_{2}+r_{2} \\
& \vdots \\
r_{n-2} & =r_{n-1} \cdot q_{n-1}+r_{n} \\
r_{n-1} & =r_{n} \cdot q_{n}+0
\end{aligned}
$$

4. The most recent non-zero remainder is the GCD: $\operatorname{gcd}(a, b)=r_{n}$

Useful Fact: \quad For all integers a, b, k :

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a-k b, b)=\operatorname{gcd}(a, b-k a)
$$

In words, subtracting a multiple of the second number from the first, or subtracting a multiple of the first number from the second does not change the GCD.

This can be used to simplify GCD calculations.
Example. If a and b are relatively prime, find $\operatorname{gcd}(a+7 b, 3 a+22 b)$.

Solution.

We can simplify the GCD by applying the above useful fact repeatedly. We can start by using the single a on the left side to cancel out the $3 a$ on the right.

$$
\begin{aligned}
\operatorname{gcd}(a+7 b, 3 a+22 b) & =\operatorname{gcd}(a+7 b, 3 a+22 b-3(a+7 b)) \\
& =\operatorname{gcd}(a+7 b, b)
\end{aligned}
$$

Then, we can remove the $7 b$ on the left with the b on the right.

$$
\begin{aligned}
\operatorname{gcd}(a+7 b, b) & =\operatorname{gcd}(a+7 b-7(b), b) \\
& =\operatorname{gcd}(a, b)=1
\end{aligned}
$$

Thus, $\operatorname{gcd}(a+7 b, 3 a+22 b)=1$ and they are also relatively prime.
Example. Calculate $\operatorname{gcd}(105,24)$.

Solution.

We follow the steps outlined above:

1. Divide 105 by 24 with remainder:

$$
105=24 \times 4+9
$$

2. Divide 24 by 9 with remainder:

$$
24=9 \times 2+6
$$

3. Keep dividing with remainder until we find a remainder of 0 :

$$
\begin{aligned}
& 9=6 \times 1+3 \\
& 6=3 \times 2+0
\end{aligned}
$$

4. The remainder before we found a 0 was 3 , so we have that $\operatorname{gcd}(105,24)=3$.

Bézout's Identity:

Bézout's identity says that for two integers a and b not both zero we can find $m, n \quad \square$ so that $a m+b n=\operatorname{gcd}(a, b)$. To find these integers m and n we perform the extended Euclidean Algorithm outlined as follows:

1. Find $\operatorname{gcd}(a, b)$ by using the Euclidean Algorithm.
2. In the divisions from the Euclidean Algorithm, solve each of the equations for the remainder:

$$
\begin{aligned}
a=b q_{1}+r_{1} & \Leftrightarrow r_{1}=a-b q_{1} \\
b=r_{1} q_{2}+r_{2} & \Leftrightarrow r_{2}=b-r_{1} q_{2} \\
& \vdots \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & \Leftrightarrow r_{n}=r_{n-2}-r_{n-1} q_{n-1}
\end{aligned}
$$

3. Starting from the last remainder, substitute the remainders backwards into the equation until you have an equation with a and b. When substituting, do not multiply numbers immediately. Instead, collect like-terms (this step will become clearer in the example). This process is called extended Euclidean Algorithm.

Example. Find $m, n \quad \square$ so that $105 m+24 n=\operatorname{gcd}(105,24)$.

Solution.

To do this we must follow the extended Euclidean Algorithm:

1. From the previous example we know $\operatorname{gcd}(105,24)=3$, we also have the equations we will need for step 2.
2. Solve the division equations for the remainder:

$$
\begin{aligned}
105=24 \cdot 4+9 & \Leftrightarrow 9=105 \quad 24 \cdot 4 \\
24=9 \cdot 2+6 & \Leftrightarrow 6=24 \quad 9 \cdot 2 \\
9=6 \cdot 1+3 & \Leftrightarrow 3=9 \quad 6 \cdot 1
\end{aligned}
$$

3. Start at the end and substitute all the remainders backwards:

$$
\begin{aligned}
& \left.3=\begin{array}{ll}
9 & 6 \times 1 \\
3 & =9 \\
3 & (24
\end{array} \quad 9 \times 2\right) \times 1 \\
& 3
\end{aligned} \quad 24+9 \times 2 .
$$

Thus, $105 \times 3+24 \times(13)=\operatorname{gcd}(105,24)$, i.e., $m=3$ and $n=13$.

