TheRobert Gillespie
 ACADEMIC
 SKILLS
 CENTRE

Volumes

Volumes

Let S be a three-dimensional solid, placed so that it lies between the vertical planes $x=a$ and $x=b$. If the cross sectional area of S in the plane S_{x}, through x and perpendicular to the x-axis, is $A(x)$, where
A is a continuous function, then the volume of S is $V=\int_{a}^{b} A(x) d x$.
If S is a solid of revolution, then all cross-sections are disks, and $A(x)=\pi r_{x}{ }^{2}$ where r is the radius of the cross-sectional disk in the plane S_{x} through x.

Rotation about the X-axis or horizontal line

$$
V=\int_{x=a}^{x=b} \pi r^{2} d x \quad \text { or } \quad V=\int_{x=a}^{x=b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x
$$

Example. Find the volume of the solid obtained by rotating the region bounded by the curves $y=\sqrt{x-1}, y=0$, and $x=5$ about the X-axis.

Solution.

The cross sectional area perpendicular to the X-axis is

$$
A(x)=\pi(y(x))^{2} .
$$

The volume of a slice with thickness $d x$ is

$$
d V=A(x) d x=\pi(y(x))^{2} d x
$$

The volume of the given solid of revolution is

$$
\begin{aligned}
V & =\int_{1}^{5} A(x) d x=\int_{1}^{5} \pi y^{2} d x==\pi \int_{1}^{5}(\sqrt{x-1})^{2} d x \\
& =\pi \int_{1}^{5}(x-1) d x=\left.\pi\left(\frac{x^{2}}{2}-x\right)\right|_{1} ^{5} \\
& =\pi\left[\left(\frac{5^{2}}{2}-5\right)-\left(\frac{1^{2}}{2}-1\right)\right]=8 \pi
\end{aligned}
$$

Rotation about y-axis or vertical line

$$
V=\int_{y=a}^{y=b} \pi r^{2} d y \quad \text { or } \quad V=\int_{y=a}^{y=b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d y
$$

Example. Find the volume of the solid obtained by rotating the region bounded by the curves $x=y^{2}+1$ and $x=3$ about the line $x=3$.

Solution.

The cross sectional area perpendicular to the y-axis is

$$
\begin{aligned}
A(y) & =\pi(3-x(y))^{2} \\
& =\pi\left(3-\left(1+y^{2}\right)\right)^{2} \\
& =\pi\left(2-y^{2}\right)^{2}
\end{aligned}
$$

The volume of a slice with thickness $d y$ is $d V=A(y) d y=\pi(x(y))^{2} d y$.

The volume of the solid object is

$$
\begin{aligned}
V & =\int_{-\sqrt{2}}^{\sqrt{2}} A(y) d y=\int_{-\sqrt{2}}^{\sqrt{2}} \pi\left(2-y^{2}\right)^{2} d y \\
& =\pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(4-2 y^{2}+y^{4}\right) d y \\
& =\left.\pi\left(4 y-\frac{2 y^{3}}{3}+\frac{y^{5}}{5}\right)\right|_{1} ^{5}=\frac{64 \sqrt{2} \pi}{15}
\end{aligned}
$$

