Sequences

Sequences

A sequence is a list of numbers written in a definite order denoted as:

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots=\left\{a_{n}\right\}
$$

where a_{1} is the first term of the sequence, a_{2} is the second term and in general, a_{n} is the nth term. (Note that often, unless stated otherwise, it is assume that the values of n start with $n=1$).

For example, $5,10,15,20,25 \ldots=\{5 n\}=\left\{a_{n}\right\}$ or

$$
-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{81} \ldots=\left\{\frac{1}{(-3)^{n}}\right\}_{n=1}^{\infty}
$$

If a sequence $\left\{a_{n}\right\}$ has a limit, that is $\lim _{n \rightarrow \infty} a_{n}=L$ where L is a real number, then it is said to be convergent, and converges to L.

If the limit of the sequence does not exist, then the sequence is said to be divergent.

For instance, the sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leq 1$, that is,
$\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{ll}0, & \text { if }-1<r<1 \\ 1, & \text { if } r=1\end{array}\right.$, and divergent otherwise.

Example. Determine if each sequence is convergent or divergent.
(a) $\quad\left\{a_{n}\right\}=\left\{3+e^{-n}\right\}$
(b) $\quad\left\{a_{n}\right\}=\left\{(-0.5)^{n}\right\}$
(c) $\quad\left\{a_{n}\right\}=\left\{\frac{n^{2}}{3+5 n}\right\}$
(d) $\quad\left\{a_{n}\right\}=\left\{(-1)^{n}\right\}$

Solution. (a) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(3+e^{-n}\right)=3$. Convergent.
(b) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-0.5)^{n}=0$. Convergent.
(c) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3+5 n}=\lim _{n \rightarrow \infty} \frac{n}{3 / n+5}=+\infty$.

Divergent.
(d) Note that $\left\{a_{n}\right\}=\left\{(-1)^{n}\right\}=-1,1,-1,1, \ldots$ $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist. Divergent.

