

# **One-sided Limits**

## **One-Sided Limits**

If f(x) approaches a real number L as x approaches a from the left (x < a), then

 $\lim_{x \to a^-} f(x) = L$  (left-handed one sided limit)

Likewise, if f(x) approaches a real number M as x approaches a from the right (x > a), then

$$\lim_{x \to a^+} f(x) = M \quad \text{(right-handed one sided limit)}$$

## Existence of a Limit of a Function

**Theorem** A function f(x) has a limit as approaches a number a if and only if its left-handed and right-handed limits that exist and are equal:

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$

Example. For the function  $f(x) = \begin{cases} x^3 - 3x, & \text{if } -1 \le x < 1 \\ x - 5, & \text{if } x \ge 1 \end{cases}$ , evaluate  $\lim_{x \to 1^+} f(x)$  and  $\lim_{x \to 1^-} f(x)$ . Does the limit  $\lim_{x \to 1} f(x)$  exist?

Solution. Since f(x) = x - 5 for  $x \ge 1$ ,  $\lim_{x \to 1^+} (x - 5) = 1 - 5 = -4$ Since  $f(x) = x^3 - 3x$  for  $-1 \le x < 1$ ,  $\lim_{x \to 1^-} x^3 - 3x = \lim_{x \to 1^-} (1)^3 - 3(1) = 1 - 3 = -2$ Since  $\lim_{x \to 1^-} f(x) = -2 \ne -4 = \lim_{x \to 1^+} f(x)$ ,



1

$$\lim_{x \to 1} f(x) \text{ does not exist.}$$

### **Infinite Limits**

If  $\lim_{x \to a^+} f(x) = \pm \infty$  or  $\lim_{x \to a^-} f(x) = \pm \infty$ , then it is said that  $\lim_{x \to a} f(x)$  does

not exist.

#### **Vertical Asymptotes**

The line x = a is a vertical asymptote of the graph of y = f(x) if either  $\lim_{x \to a^+} f(x) = \pm \infty$  or  $\lim_{x \to a^-} f(x) = \pm \infty$ .

Geometrically, the graph of a function f(x) is said to have a vertical asymptote at x = a if f(x) increases or decreases without bound as x approaches a, from either the right or the left, or from both directions.



In general, a rational function  $R(x) = \frac{p(x)}{q(x)}$  has a vertical asymptote x = a whenever q(a) = 0, but  $p(a) \neq 0$ .



Example. Find  $\lim_{x \to 3^+} \frac{2}{x-3}$  and  $\lim_{x \to 3^-} \frac{2}{x-3}$ . Is there a vertical asymptote?

Solution. When x = 3, the denominator in  $f(x) = \frac{2}{x-3}$  is 0 and the numerator is a nonzero number. Thus, the limit of f(x) as x approaches 3 is either  $\infty$  or  $-\infty$ .

Consider the right-handed limit 
$$\lim_{x\to 3^+} \frac{2}{x-3}$$
.

Since x > 3, the denominator x - 3 is positive, and thus, the fraction  $\frac{2}{x-3}$  is positive.

Therefore,  $\lim_{x\to 3^+} \frac{2}{x-3} = +\infty$ , and the function  $f(x) = \frac{2}{x-3}$  has a vertical asymptote at x = 3.

Compute the left-handed limit  $\lim_{x\to 3^-} \frac{2}{x-3}$  in the same way. Alternatively, pick a value of x very close to the left of 3, say x = 2.9, and substitute this value into  $\frac{2}{x-3}$ . A negative number is obtained. It follows that  $\lim_{x\to 3^-} \frac{2}{x-3} = -\infty$ . Thus, the function  $f(x) = \frac{2}{x-3}$  has a vertical asymptote at x = 3.

As a result, the function  $f(x) = \frac{2}{x-3}$  has a vertical asymptote at x = 3 from both sides.

