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Substitution Rule 
 
If u  g(x) is a differentiable function whose range is an interval I  and if f  is 

continuous on I , then f (g(x))g '(x)dx  f (u)du .  

 
Note that the assumptions guarantee that the integrands on both sides of this equality 
are continuous functions. 

 
TIP: Substitute terms that are: 
 

 raised to a high power 

(3x2  2x)(x3  x2 )3 dx  
let u  x3  x2

  

 
 under a root  

4x3 x4 15 dx  
     let u  x4 1 

 
 in the power of the exponential  

ex3x (3x2 1)dx     
let u  x3  x   

 
 within the trigonometric function 

3x2 sin(x3)dx      let u  x3
 

 
 within the logarithmic function 

3(4x3  x2 )ln(3x4  x3)dx      let t  3x4  x3
 

 
 

Example. Integrate 3(8z 1)e4z2z dz . 

 

Solution. Let u  4z2  z. Then, du  (8z 1)dz. 
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3(8z 1)e4z2z dz  3eu du  3 eu du

 3eu C  3e4z2z C
 

 
 
 

Example. Integrate 
x

1 4x2
dx . 

 

Solution. Let u  1 4x2
. Then, du  8xdx , but rewrite it as    
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Definite Integral by Substitution 
 
If g '(x) is continuous on [a,b] and if f  is continuous on the range of u  g(x), 

then  
 

f (g(x))g '(x)dx
a

b

  f (u)du
g(a)

g(b)


 F(u)

g(a)

g(b)  F(g(b)) F(g(a))
  

, 

 
where F  is an antiderivative of f . (Note that an alternative solution is provided to the 

example below for illustration of this formula.) 
 
Computing a Definite Integral by Substitution 
 
Step 1. Solve the integral as an indefinite integral. 
 
Step 2. Use the result of the indefinite integral, and evaluate it over the interval of 

integration. 
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Alternatively, change the limits of integration when converting the integral to the new 
variable u  (see example below). 
 
 
 
 
 

Example. Integrate 
2x

(2  x2 )3 dx
1

0

 . 

 
Solution. Step 1. 
 

Let u  2  x2
. Then, du  2xdx . 
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(2  x2 )3 dx  2x(2  x2 )3 dx  u3 du
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  Step 2. 
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Alternative solution. 
 

Let u  2  x2
. Then, du  2xdx . 
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2x

(2  x2 )3 dx
1

0

  2x(2  x2 )3 dx
1
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  u3 du
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