

## **Integral Test**

## Integral Test

Suppose f is continuous, positive, decreasing function on  $[1, \infty)$  and let  $a_n = f(n)$ . Then, the series  $\sum_{n=1}^{\infty} a_n$  is convergent if and only if the improper integral  $\int_1^{\infty} f(x) dx$  is convergent.

Remember: By the Integral Test, the following result can be proven.

The p-series 
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent if  $p > 1$  and divergent if  $p \le 1$ . For example,  $\sum_{n=1}^{\infty} \frac{1}{n}$  (harmonic series) is divergent since it is a p-series with  $p = 1$ .

Example. Determine whether the series  $\sum_{n=1}^{\infty} ne^{-n^2}$  diverges or converges.

Solution. Let  $f(x) = xe^{-x^2}$ . The function f(x) is continuous, positive, and decreasing, since  $f'(x) = e^{-x^2}(1-2x) < 0$  for all x values in  $[1, \infty)$ .

By the integral test, (using integration by substitution)

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x^{2}} dx = \lim_{t \to \infty} \left. -\frac{e^{-x^{2}}}{2} \right|_{1}^{t}$$
$$= \lim_{t \to \infty} \left( -\frac{e^{-t^{2}}}{2} \right) - \left( -\frac{e^{-1}}{2} \right) = \frac{e^{-1}}{2} = \frac{1}{2e^{-1}}$$



