Improper Integrals

CENTRE

Improper Integrals

Type I. Infinite Intervals
(a) If f is continuous on $[a, \infty)$, then $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$.
(b) If f is continuous on $(-\infty, a]$, then $\int_{-\infty}^{a} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{a} f(x) d x$.
(c) If f is continuous on $(-\infty, \infty)$, then break up the integral at a convenient value of a, i.e., write $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$, and then use (a) and (b).

Type II. Discontinuous Functions
(a) If f is continuous on $[a, b)$ and discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

(b) If f is continuous on $(a, b]$ and discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

(c) If f is continuous on $[a, b]$, except at a number C in (a, b), then break up the integral at c, i.e., write $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, and then use (a) and (b).

The improper integral is said to:

- CONVERGE if the limit in (a) and (b) exists, or if both limits in (c) exist
- DIVERGE if the limit in (a) or (b) does not exist, or if at least one of the limits in (c) does not exist

Remember: The improper integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$, where p is a real number converges when $p>1$, and diverges when $p \leq 1$.

Example. Determine whether the following integrals converge or diverge.
(a) $\int_{2}^{\infty} e^{3 x} d x$
(b) $\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x$
(c) $\int_{0}^{1} x \ln x d x$

Solution.
(a)

$$
\begin{aligned}
& \int_{2}^{\infty} e^{3 x} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} e^{3 x} d x=\left.\lim _{t \rightarrow \infty}\left(\frac{e^{3 x}}{3}\right)\right|_{2} ^{t} \\
& =\lim _{t \rightarrow \infty}\left[\left(\frac{e^{3 t}}{3}\right)-\left(\frac{e^{6}}{3}\right)\right]=+\infty \\
& \text { Thus, } \int_{2}^{\infty} e^{3 x} d x \text { diverges. }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x=\int_{-\infty}^{0} \frac{1}{x^{2}+1} d x+\int_{0}^{\infty} \frac{1}{x^{2}+1} d x \\
& =\lim _{t \rightarrow-\infty} \int_{t}^{0} \frac{1}{x^{2}+1} d x+\lim _{s \rightarrow \infty} \int_{0}^{s} \frac{1}{x^{2}+1} d x \\
& =\left.\lim _{t \rightarrow-\infty}(\arctan (x))\right|_{t} ^{0}+\lim _{s \rightarrow \infty}\left(\left.\arctan (x)\right|_{0} ^{s}\right. \\
& =\lim _{t \rightarrow-\infty}(\arctan (0)-\arctan (t))+\lim _{s \rightarrow \infty}(\arctan (s)-\arctan (0)) \\
& =\left(0+\frac{\pi}{2}\right)+\left(\frac{\pi}{2}-0\right)=\pi
\end{aligned}
$$

Thus, $\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x$ converges.
Note that $\arctan (x)$ tends to $\pi / 2$ as x approaches $+\infty$ and to $-\pi / 2$ as x approaches $-\infty$.
(c) Compute the indefinite integral using integration by parts where $u=\ln x$ and $d v=x d x$.
$\int x \ln x d x=\frac{x^{2} \ln x}{2}-\int\left(\frac{x^{2}}{2}\right)\left(\frac{1}{x} d x\right)$
$=\frac{x^{2} \ln x}{2}-\frac{1}{2} \int x d x=\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}+C$
Now, solve the improper integral.
$\int_{0}^{1} x \ln x d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x \ln x d x$
$=\left.\lim _{t \rightarrow 0^{+}}\left(\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4}\right)\right|_{t} ^{1}$
$=\lim _{t \rightarrow 0^{+}}\left(\frac{(1)^{2} \ln (1)}{2}-\frac{(1)^{2}}{4}\right)-\left(\frac{t^{2} \ln t}{2}-\frac{t^{2}}{4}\right)$
$=\left(0-\frac{1}{4}\right)-(0-0)=-\frac{1}{4}$
Thus, $\int_{0}^{1} x \ln x d x$ converges.

Note that, applying L'Hôpital's Rule to solve the limit,

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} t^{2} \ln t=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{\frac{1}{t^{2}}}=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{t^{-2}}=\lim _{t \rightarrow 0^{+}} \frac{\frac{1}{t}}{-2 t^{-3}}=\lim _{t \rightarrow 0^{+}} \frac{\frac{1}{t}}{\frac{-2}{t^{3}}} \\
& =\lim _{t \rightarrow 0^{+}}\left(\frac{1}{t}\right)\left(\frac{t^{3}}{-2}\right)=\lim _{t \rightarrow 0^{+}}\left(-\frac{t^{2}}{2}\right)=0
\end{aligned}
$$

