Definition of a Derivative

Derivative of a Function $f(x)$ at a Number a

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}, \text { or } f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}, \text { provided that }
$$

the limit exists. (Note that the former formula is used more often than the latter.)

Example. Using the definition of the derivative at a number, find the slope of tangent line at $x=-2$ to the curve $y=-6 x^{2}$. What is the equation of the tangent line at this point?

Solution. By definition of the derivative, the slope of the tangent line at $X=-2$ is

$$
\begin{aligned}
f^{\prime}(-2) & =\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-6(-2+h)^{2}-\left(-6(-2)^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-24+24 h-6 h^{2}+24}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(24-6 h)}{h}=\lim _{h \rightarrow 0}(24-6 h)=24
\end{aligned}
$$

When $x=-2, y(-2)=-6(-2)^{2}=-24$, that is, the point of tangency is $(-2,-24)$.

Using the point-slope formula, $y+24=24(x+2)$

$$
y=24 x+24
$$

Derivative Function $f^{\prime}(x)$ of a Function $f(x)$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text {, for any } x \text { for which this limit exists. }
$$

Example. Using the definition of the derivative, given the function $f(x)=3-\frac{1}{x^{2}}$, find $f^{\prime}(x)$.

Solution. By the definition of the derivative,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3-\frac{1}{(x+h)^{2}}\right]-\left[3-\frac{1}{x^{2}}\right]}{h}=\lim _{h \rightarrow 0} \frac{-\frac{1}{(x+h)^{2}}+\frac{1}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-x^{2}+(x+h)^{2}}{x^{2}(x+h)^{2}}}{h}=\lim _{h \rightarrow 0}\left(\frac{-x^{2}+x^{2}+2 x h+h^{2}}{x^{2}(x+h)^{2}}\right)\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h x^{2}(x+h)^{2}}=\lim _{h \rightarrow 0} \frac{2 x+h}{x^{2}(x+h)^{2}}=\frac{2 x}{x^{2}(x)^{2}}=\frac{2}{x^{3}}
\end{aligned}
$$

