TheRobert Gillespie
 ACADEMIC
 SKILLS
 CENTRE

Definition of Continuity

Definition of Continuity

A function $f(x)$ is continuous at a point $X=a$ if and only if the following conditions are satisfied:

1. $\quad f(a)$ exists (i.e., a lies in the domain of f)
2. $\lim _{x \rightarrow a} f(x)$ exists (f has a limit as $x \rightarrow a$, i.e., the limit is a real number)
3. $\lim _{x \rightarrow a} f(x)=f(a)$ (the limit equals the function value)

If one or more of these conditions fail, then $f(x)$ is not continuous at a point $X=a$.
Example. Consider the function $f(x)=\left\{\begin{array}{cc}\frac{x^{3}+2 x^{2}-8 x}{x^{2}-4} & , \text { if } x \neq 2 \\ 4, & \text { if } x=2\end{array}\right.$.
(a) Is $f(x)$ continuous at $x=-2$?
(b) Does $\lim _{x \rightarrow 2} f(x)$ exist?
(c) Is $f(x)$ continuous at $x=2$?

Solution.
(a) $\quad f(-2)=\frac{(-2)^{3}+2(-2)^{2}-8(-2)}{(-2)^{2}-4}=\frac{16}{0}$. Thus, $f(-2)$ is not defined, and hence, $f(x)$ is NOT continuous at $x=-2$.
(b) Note that one-side is not necessary, but for completeness, it is shown.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \frac{x^{3}+2 x^{2}-8 x}{x^{2}-4} \\
& =\lim _{x \rightarrow 2^{-}} \frac{x(x+4)(x-2)}{(x+2)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{x(x+4)}{x+2} \\
& =\frac{2(2+4)}{2+2}=3
\end{aligned}
$$

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x(x+4)}{x+2}=\frac{2(2+4)}{2+2}=3
$$

Yes, the limit exists, that is, $\lim _{x \rightarrow 2} f(x)=3$.
(c) Note that $f(2)=4 \neq 3=\lim _{x \rightarrow 2} f(x)$

By the definition of continuity, $f(x)$ is NOT continuous at $x=2$.

