

Alternating Series Test

Alternating Series Test

If the terms of the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - \dots$ where $b_n > 0$ satisfy

(1)
$$b_{n+1} \le b_n$$
 for all $n \ge 1$ (b_n is decreasing)
(2) $\lim_{n \to \infty} b_n = 0$

then the series is convergent.

(a)

Example. Determine whether the following series are convergent or divergent.

(a)
$$\sum_{n=2}^{\infty} \frac{n(-1)^n}{\ln n}$$
 (b) $\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{n^{3/4}}$

Solution.

Checking condition (2) of the alternating series test. Let $b_n = \frac{n}{\ln n}$. Using L'Hôpital's rule to compute the limit, $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{\ln n} = \lim_{n \to \infty} \frac{1}{1/n}$ $= \lim_{n \to \infty} n = \infty \neq 0$ Thus, condition (2) is not satisfied, and the alternating series $\sum_{n=2}^{\infty} \frac{n(-1)^n}{\ln n}$ is divergent.

(b) Note that $\sum_{n=1}^{\infty} \cos(n\pi) = \sum_{n=1}^{\infty} (-1)^n$.

Then, the series can be written as $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/4}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/4}}.$

Checking both conditions of the alternating series test.

Let
$$b_n = rac{1}{n^{3/4}}$$
. Clearly, $b_n > 0$.

Condition (1):

Let $f(x) = \frac{1}{x^{3/4}}$. Then, $f'(x) = -\frac{3}{4x^{7/4}} < 0$ for all x values in $[1,\infty)$. This means that b_n is decreasing for all n in $[1,\infty)$.

Condition (2):

Remember the fact:

$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, where $p>0$ is a real number.

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{1}{n^{3/4}}=0$$

Both conditions of the alternating series test are satisfied. Thus,

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/4}}$$
 is convergent.

