Relative Maximum and Relative Minimum

 CENTRE
Relative Maximum and Relative Minimum

A function $f(x, y)$ is said to have a relative maximum at the point $P(a, b)$ in the domain of f if $f(a, b) \geq f(x, y)$ for all points (x, y) in a disk centered at P. Similarly, if $f(c, d) \leq f(x, y)$ for all points (x, y) in a circular disk centered at Q, then $f(x, y)$ has a relative minimum at $Q(c, d)$.

Critical Points

A point (a, b) in the domain of $f(x, y)$ is called a critical point of f, if

$$
f_{x}(a, b)=0 \quad \text { and } \quad f_{y}(a, b)=0
$$

or if one of these partial derivative does not exist.
Theorem: If f has a relative extreme value at (a, b), and the partial derivatives f_{x} and f_{y} exist, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

This theorem says that the relative extrema of f can occur only at critical points.

Saddle Points

Although all relative extrema of a function must occur at critical points, not every critical point yields a relative extremum. A critical point which is neither a local minimum nor a local maximum is called a saddle point.

A saddle point a function indeed looks like a saddle: it has a relative maximum in some direction and a relative minimum in another direction (in simplest cases, such as $f(x, y)=y^{2}-x^{2}$, these directions are the directions of the x-axis and the y-axis).

Finding Relatiive Extrema Using the Second Derivative Test

The procedure involving second-order derivatives can be used to decide whether a given critical point is a relative maximum, a relative minimum, or a saddle point.

Let $f(x, y)$ be a function of two variables x and y whose partial derivatives f_{x}, f_{y}, $f_{x x}, f_{y y}$, and $f_{x y}$ all exist and are continuous on a disk centred at each critical point, and let

$$
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-\left[f_{x y}(x, y)\right]^{2} .
$$

Step 1. Find all critical points of $f(x, y)$, that is, all points (a, b) so that

$$
f_{x}(a, b)=0 \quad \text { and } \quad f_{y}(a, b)=0
$$

Step 2. For each critical point (a, b) found in Step 1, evaluate $D(a, b)$.
Step 3. If $D(a, b)<0$, then (a, b) is a saddle point (and the function has no extreme value there).

If $D(a, b)>0$, compute $f_{x x}(a, b)$:
If $f_{x x}(a, b)>0$, then (a, b) is a relative minimum.
If $f_{x x}(a, b)<0$, then (a, b) is a relative maximum.
If $D(a, b)=0$, the test is inconclusive and f may have either a relative extremum or a saddle point at (a, b).

In summary:

Sign of D	Sign of $f_{x x}$	Behavior at (a, b)
+	+	relative minimum
+	-	relative maximum
-	not relevant	saddle point

Example. Find all critical points for the function $f(x, y)=12 x-x^{3}-4 y^{2}$ and classify each as a relative maximum, a relative minimum, or a saddle point.

Solution. Solving $f_{x}=12-3 x^{2}$ and $f_{y}=-8 y$ yields $x=2, x=-2$, and $y=0$. Thus, the critical points are $(2,0)$ and $(-2,0)$. The second-order partial derivatives are $f_{x x}=-6 x$, and $f_{x y}=0$.

Then, $D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(-6 x)(-8)-0=48 x$.
At $(2,0): D(2,0)=48(2)=96>0$ and
$f_{x x}(2,0)=-6(2)=-12<0$ which means that $(2,0)$ is a relative maximum.

At $(-2,0): D(-2,0)=48(-2)=-96<0$ which means that $(-2,0)$ is a saddle point.

Example. Find all critical points for the function $f(x, y)=e^{2 x y}$ and classify each as a relative maximum, a relative minimum, or a saddle point.

Solution. Since $f_{x}=2 y e^{2 x y}$ and $f_{y}=2 x e^{2 x y}$, there is only one critical point $(0,0)$.

The second-order partial derivatives are $f_{x x}=4 y^{2} e^{2 x y}, f_{y y}=4 x^{2} e^{2 x y}$, and $f_{x y}=2 e^{2 x y}+4 x y e^{2 x y}$.

Then,

$$
\begin{aligned}
D(x, y) & =f_{x x} f_{y y}-\left(f_{x y}\right)^{2} \\
& =\left(4 y^{2} e^{2 x y}\right)\left(4 x^{2} e^{2 x y}\right)-\left(2 e^{2 x y}+4 x y e^{2 x y}\right)^{2}
\end{aligned}
$$

At $(0,0), D(0,0)=0-\left(2 e^{0}+0\right)^{2}=-4<0$, which means that $(0,0)$ is a saddle point.

