Partial Derivatives

CENTRE

Partial Derivatives

Suppose $Z=f(x, y)$. The partial derivatives of f with respect to x is denoted by

$$
\frac{\partial z}{\partial x} \quad \text { or } \quad f_{x}(x, y) \text { or } \frac{\partial f}{\partial x}
$$

and is the function obtained by differentiating f with respect to x, treating y as a constant. The partial derivative of f with respect to y is denoted by

$$
\frac{\partial z}{\partial y} \text { or } f_{y}(x, y) \text { or } \frac{\partial f}{\partial y}
$$

and is the function obtained by differentiating f with respect to y, treating x as a constant.

Computation of Partial Derivatives

No new rules are needed for the computation of partial derivatives.
Example. Find the partial derivatives f_{x} and f_{y}, if $f(x, y)=x^{2}+2 x y^{2}+\frac{2 y}{3 x}$

Solution.

$$
\begin{aligned}
& f_{x}(x, y)=2 x+2(1) y^{2}+\frac{2}{3} y\left(-x^{-2}\right)=2 x+2 y^{2}-\frac{2 y}{3 x^{2}} \\
& f_{y}(x, y)=0+2 x(2 y)+\frac{2}{3}(1)\left(x^{-1}\right)=4 x y+\frac{2}{3 x}
\end{aligned}
$$

Example. Find the partial derivatives f_{x} and f_{y}, if $f(x, y)=x e^{-2 x y}$.
Solution. $\quad f_{x}(x, y)=x\left(-2 y e^{-2 x y}\right)+e^{-2 x y}=e^{-2 x y}(1-2 x y)$

$$
f_{y}(x, y)=x\left(-2 x e^{-2 x y}\right)=-2 x^{2} e^{-2 x y}
$$

Second-Order Partial Differentiation

If $Z=f(x, y)$, the partial derivative of f_{x} with respect to x is

$$
f_{x x}=\left(f_{x}\right)_{x} \quad \text { or } \quad \frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{x}\left(\frac{\partial z}{\partial x}\right) \quad \text { or } \quad \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{x}\left(\frac{\partial f}{\partial x}\right) .
$$

The partial derivative of f_{x} with respect to y is

$$
f_{x y}=\left(f_{x}\right)_{y} \text { or } \quad \frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{y}\left(\frac{\partial z}{\partial x}\right) \text { or } \frac{\partial^{2} f}{\partial y x}=\frac{\partial}{y}\left(\frac{\partial f}{\partial x}\right) .
$$

The partial derivative of f_{y} with respect to x is

$$
f_{y x}=\left(f_{y}\right)_{x} \quad \text { or } \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{x}\left(\frac{\partial z}{\partial y}\right) \text { or } \quad \frac{\partial^{2} f}{\partial x y}=\frac{\partial}{x}\left(\frac{\partial f}{\partial y}\right) .
$$

The partial derivative of f_{y} with respect to y is

$$
f_{y y}=\left(f_{y}\right)_{y} \quad \text { or } \quad \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{y}\left(\frac{\partial z}{\partial y}\right) \quad \text { or } \quad \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{y}\left(\frac{\partial f}{\partial y}\right) .
$$

The two partial derivatives $f_{x y}$ and $f_{y x}$ are sometimes called mixed second-order partial derivatives of f. If both mixed second-order partial derivatives are continuous (on some disk), then they are equal, i.e., mixed partial derivatives are equal $f_{x y}=f_{y x}$.

Example. Compute the four second-order partial derivatives of the function

$$
f(x, y)=x y^{3}+5 x y^{2}+2 x+1 .
$$

Solution. $\quad f_{x}=y^{3}+5 y^{2}+2$. Then, it follows that

$$
f_{x x}=0 \text { and } f_{x y}=3 y^{2}+10 y
$$

$$
\begin{aligned}
& f_{y}=3 x y^{2}+10 x y . \text { Then, it follows that } \\
& f_{y y}=6 x y+10 x \text { and } f_{y x}=3 y^{2}+10 y
\end{aligned}
$$

Example. Compute the four second-order partial derivatives of the function $f(x, y)=x^{2} y e^{x}$.

Solution. $\quad f_{x}=y\left(2 x e^{x}+x^{2} e^{x}\right)$. Then, it follows that

$$
\begin{aligned}
f_{x x} & =y\left[2\left(e^{x}+x e^{x}\right)+2 x e^{x}+x^{2} e^{x}\right] \\
& =y\left(4 x e^{x}+2 e^{x}+x^{2} e^{x}\right)
\end{aligned}
$$

and $f_{x y}=2 x e^{x}+x^{2} e^{x}$.
$f_{y}=x^{2} e^{x}$. Then, it follows that
$f_{y y}=0$ and $f_{y x}=2 x e^{x}+x^{2} e^{x}$.

