

One-sided Limits

One-Sided Limits

If f(x) approaches a real number L as x approaches a from the left (x < a), then

$$\lim_{x \to a^{-}} f(x) = L \qquad \text{(left-handed one sided limit)}$$

Likewise, if f(x) approaches a real number M as x approaches a from the right (x>a), then

$$\lim_{x \to a^+} f(x) = M \quad \text{(right-handed one sided limit)}$$

Existence of a Limit of a Function

Theorem A function f(x) has a limit as approaches a number a if and only if its left-handed and right-handed limits that exist and are equal:

$$\lim_{x\to a} f(x) = L \quad \text{if and only if} \quad \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$$

Example. For the function $f(x) = \begin{cases} x^3 - 3x, & \text{if } -1 \leq x < 1 \\ x - 5, & \text{if } x \geq 1 \end{cases}$, evaluate $\lim_{x \to 1^+} f(x)$ and $\lim_{x \to 1^-} f(x)$. Does the limit $\lim_{x \to 1} f(x)$ exist?

Solution. Since
$$f(x) = x - 5$$
 for $x \ge 1$, $\lim_{x \to 1^+} (x - 5) = 1 - 5 = -4$ Since $f(x) = x^3 - 3x$ for $-1 \le x < 1$, $\lim_{x \to 1^-} x^3 - 3x = \lim_{x \to 1^-} (1)^3 - 3(1) = 1 - 3 = -2$ Since $\lim_{x \to 1^-} f(x) = -2 \ne -4 = \lim_{x \to 1^+} f(x)$,

 $\lim_{x\to 1} f(x)$ does not exist.

Infinite Limits

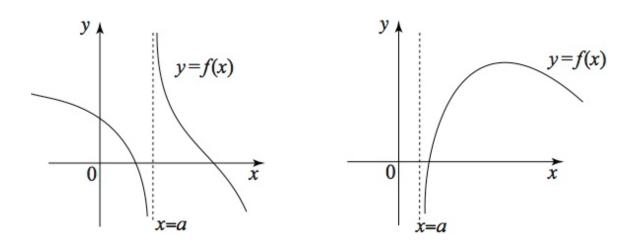
If
$$\lim_{x\to a^+} f(x) = \pm \infty$$
 or $\lim_{x\to a^-} f(x) = \pm \infty$, then it is said that $\lim_{x\to a} f(x)$ does

not exist.

Vertical Asymptotes

The line x=a is a vertical asymptote of the graph of y=f(x) if either $\lim_{x\to a^+}f(x)=\pm\infty$ or $\lim_{x\to a^-}f(x)=\pm\infty$.

Geometrically, the graph of a function f(x) is said to have a vertical asymptote at x = a if f(x) increases or decreases without bound as x approaches a, from either the right or the left, or from both directions.



In general, a rational function $R(x)=\frac{p(x)}{q(x)}$ has a vertical asymptote x=a whenever q(a)=0, but $p(a)\neq 0$.

Example. Find $\lim_{x\to 3^+} \frac{2}{x-3}$ and $\lim_{x\to 3^-} \frac{2}{x-3}$. Is there a vertical asymptote?

Solution. When x=3, the denominator in $f(x)=\frac{2}{x-3}$ is 0 and the numerator is a nonzero number. Thus, the limit of f(x) as x approaches 3 is either ∞ or $-\infty$.

Consider the right-handed limit $\lim_{x\to 3^+} \frac{2}{x-3}$.

Since x > 3, the denominator x - 3 is positive, and thus, the fraction $\frac{2}{x - 3}$ is positive.

Therefore, $\lim_{x\to 3^+}\frac{2}{x-3}=+\infty$, and the function $f(x)=\frac{2}{x-3}$ has a vertical asymptote at x=3.

Compute the left-handed limit $\lim_{x\to 3^-}\frac{2}{x-3}$ in the same way. Alternatively, pick a value of x very close to the left of 3, say x=2.9, and substitute this value into $\frac{2}{x-3}$. A negative number is obtained. It follows that $\lim_{x\to 3^-}\frac{2}{x-3}=-\infty$. Thus, the function $f(x)=\frac{2}{x-3}$ has a vertical asymptote at x=3.

As a result, the function $f(x) = \frac{2}{x-3}$ has a vertical asymptote at x=3 from both sides.