One-sided Limits

CENTRE

One-Sided Limits

If $f(x)$ approaches a real number L as x approaches a from the left $(x<a)$, then

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { (left-handed one sided limit) }
$$

Likewise, if $f(x)$ approaches a real number M as X approaches a from the right $(x>a)$, then

$$
\lim _{x \rightarrow a^{+}} f(x)=M \quad \text { (right-handed one sided limit) }
$$

Existence of a Limit of a Function

Theorem A function $f(x)$ has a limit as approaches a number a if and only if its left-handed and right-handed limits that exist and are equal:
$\lim _{x \rightarrow a} f(x)=L \quad$ if and only if $\quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$
Example. For the function $f(x)=\left\{\begin{array}{ll}x^{3}-3 x, & \text { if }-1 \leq x<1 \\ x-5, & \text { if } x \geq 1\end{array}\right.$, evaluate
$\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$. Does the limit $\lim _{x \rightarrow 1} f(x)$ exist?

Solution. Since $f(x)=x-5$ for $x \geq 1$, $\lim _{x \rightarrow 1^{+}}(x-5)=1-5=-4$
Since $f(x)=x^{3}-3 x$ for $-1 \leq x<1$,
$\lim _{x \rightarrow 1^{-}} x^{3}-3 x=\lim _{x \rightarrow 1^{-}}(1)^{3}-3(1)=1-3=-2$
Since $\lim _{x \rightarrow 1^{-}} f(x)=-2 \neq-4=\lim _{x \rightarrow 1^{+}} f(x)$,
$\lim _{x \rightarrow 1} f(x)$ does not exist.

Infinite Limits

If $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$, then it is said that $\lim _{x \rightarrow a} f(x)$ does
not exist.

Vertical Asymptotes

The line $x=a$ is a vertical asymptote of the graph of $y=f(x)$ if either $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$.

Geometrically, the graph of a function $f(x)$ is said to have a vertical asymptote at $x=a$ if $f(x)$ increases or decreases without bound as x approaches a, from either the right or the left, or from both directions.

In general, a rational function $R(x)=\frac{p(x)}{q(x)}$ has a vertical asymptote $x=a$ whenever $q(a)=0$, but $p(a) \neq 0$.

Example. Find $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}$ and $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}$. Is there a vertical asymptote?
Solution. When $x=3$, the denominator in $f(x)=\frac{2}{x-3}$ is 0 and the numerator is a nonzero number. Thus, the limit of $f(x)$ as x approaches 3 is either ∞ or $-\infty$.

Consider the right-handed limit $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}$.
Since $x>3$, the denominator $x-3$ is positive, and thus, the fraction $\frac{2}{x-3}$ is positive.

Therefore, $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=+\infty$, and the function $f(x)=\frac{2}{x-3}$ has a vertical asymptote at $x=3$.

Compute the left-handed limit $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}$ in the same way. Alternatively, pick a value of x very close to the left of 3 , say $x=2.9$, and substitute this value into $\frac{2}{x-3}$. A negative number is obtained. It follows that $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=-\infty$. Thus, the function $f(x)=\frac{2}{x-3}$ has a vertical asymptote at $X=3$.

As a result, the function $f(x)=\frac{2}{x-3}$ has a vertical asymptote at $x=3$ from both sides.

