

Lagrange Multipliers

Lagrange Multipliers

The method of Lagrange multipliers uses the fact that any relative extremum of the function f(x, y) subject to the constraint g(x, y) = k, if it exists, must occur at a critical point (a, b) of the function

$$F(x, y) = f(x, y) - \lambda[g(x, y) - k]$$

where λ is a new variable (called the Lagrange multiplier). To find the critical points of F, compute its partial derivatives:

$$F_x = f_x - \lambda g_x$$
, $F_y = f_y - \lambda g_y$, $F_\lambda = -(g - k)$,

and solve the equations $F_x = 0$, $F_y = 0$, and $F_{\lambda} = 0$ simultaneously, as follows, to obtain three (Lagrange) equations:

$$F_x = f_x - \lambda g_x = 0 \quad \text{or} \quad f_x = \lambda g_x$$

$$F_y = f_y - \lambda g_y = 0 \quad \text{or} \quad f_y = \lambda g_y$$

$$F_\lambda = -(g - k) = 0 \quad \text{or} \quad g = k$$

Finally, evaluate f(a, b) at each critical point (a, b) of F.

Example. The highway department is planning to build a picnic area for motorists along a major highway. It is to be rectangular with an area of 5000 m² and is to be fenced off on the three sides not adjacent to the highway. What is the least amount of fencing that will be needed to complete the job?

1

Solution. Label the sides of the picnic area as in the figure and let f denote the amount of fencing required.

Then, f(x, y) = x + 2y, and clearly, x, y > 0. The goal is to minimize f given the requirement that the area must be 5000 m², that is, subject to the constraint g(x, y) = xy = 5000.

Find the partial derivatives:

 $f_x = 1$, $f_y = 2$, $g_x = y$, and $g_y = x$.

Obtain the three Lagrange equations: $1 = \lambda y$, $2 = \lambda x$, and xy = 5000.

From the first and second equations,

 $\lambda = \frac{1}{y}$ and $\lambda = \frac{2}{x}$ (since $y \neq 0$ and $x \neq 0$) which implies that $\frac{1}{y} = \frac{2}{x}$ or x = 2y.

Now, substitute x = 2y into the third Lagrange equation:

 $2y^2 = 5000$ or $y = \pm 50$, but use the positive value for length!

Substitute y = 50 into the equation x = 2y to get that x = 100.

Thus, the total amount of fencing needed is 100 + 50 + 50 = 200 m.

Example. Find the maximum and minimum values of the function f(x, y) = xysubject to the constraint $x^2 + y^2 = 8$.

Solution. In this case, $g(x, y) = x^2 + y^2$.

Find the partial derivatives:

$$f_x = y$$
, $f_y = x$, $g_x = 2x$, and $g_y = 2y$.

Obtain the three Lagrange equations:

 $y = 2\lambda x$, $x = 2\lambda y$, and $x^2 + y^2 = 8$, note that neither x nor y can be zero.

Rewrite the first two equations as

$$2\lambda = \frac{y}{x}$$
 and $2\lambda = \frac{x}{y}$ which implies that
 $\frac{y}{x} = \frac{x}{y}$ or $y^2 = x^2$.

Now, substitute $y^2 = x^2$ into the third equation to get $2x^2 = 8$ or $x = \pm 2$.

If x = 2, it follows from equation $x^2 = y^2$ that y = 2 or y = -2. If x = -2, it follows from equation $x^2 = y^2$ that y = 2 or y = -2.

Hence, there are four points at which the constrained extrema can occur: (2, 2), (2, -2), (-2, 2), and (-2, -2).

Since f(2,2) = f(-2,-2) = 4 and f(2,-2) = f(-2,-2) = -4, it follows that when $x^2 + y^2 = 8$, the maximum value of f(x, y) is 4 at the points (2, 2) and (2, -2), and the minimum value of f(x, y) is -4 at the points (-2, 2) and (-2, -2).

