General Graphing Steps

CENTRE

A General Procedure for Sketching the Graph of a Function

Step 1. Find the domain of $y=f(x)$ (that is, all x values where $f(x)$ is defined).

Step 2. Find and plot all intercepts. The y-intercept (where $x=0$) is usually easy to find, but the x-intercept (where $y=f(x)=0$) may be difficult to find as it involves solving an equation.

Step 3. Determine all vertical and horizontal asymptotes of the graph of $f(x)$. Draw the asymptotes by using dashed lines.
def: Vertical Asymptote
The line $x=c$ is a vertical asymptote of the graph of $f(x)$ if either

$$
\begin{aligned}
& \lim _{x \rightarrow c^{-}} f(x)=+\infty \quad(\text { or }-\infty) \\
& \text { or } \quad \lim _{x \rightarrow c^{+}} f(x)=+\infty \quad(\text { or }-\infty)
\end{aligned}
$$

def: Horizontal Asymptote
The horizontal line $y=b$ is called a horizontal asymptote of the graph of $y=f(x)$ if

$$
\lim _{x \rightarrow-\infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow \infty} f(x)=b
$$

Step 4. Find $f^{\prime}(x)$ and use it to determine the critical numbers of $f(x)$ and the intervals where $f(x)$ is increasing and decreasing.

Procedure for Using the Derivative to Determine Intervals of Increase and Decrease for a Function f

Step I. Find the critical numbers, i.e., all values of x for which $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist, and mark these numbers on a number line. As well, mark the
numbers which are not in the domain of $f(x)$. All these numbers divide the number line into open intervals.

Step II. Choose a test number c from each interval $a<x<b$ determined in Step I., and evaluate $f^{\prime}(c)$. Then,

If $f^{\prime}(c)>0$, the function $f(x)$ is increasing (graph rising) on $a<x<b$.

If $f^{\prime}(c)<0$, the function $f(x)$ is decreasing (graph falling) on $a<x<b$.

Step 5. Determine the x and y coordinates of all relative extrema.
def: The First Derivative Test for Relative Extrema
Let c be a critical number for $f(x)$ (that is, $f(c)$ is defined and either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist).
Then the critical point $P(c, f(c))$ is
a relative maximum - if $f^{\prime}(x)>0$ to the left of c and $f^{\prime}(x)<0$ to the right of c
a relative minimum - if $f^{\prime}(x)<0$ to the left of c and $f^{\prime}(x)>0$ to the right of c
not a relative extremum - if $f^{\prime}(x)$ has the same sign on both sides of c

Step 6. Find $f^{\prime \prime}(x)$ and use it to determine intervals of concavity and points of inflection.

Second Derivative Procedure for Determining Intervals of Concavity for a Function f

Step I. Find all values of x for which $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist, and mark these numbers on a number line. As well, mark the numbers which are not in the
domain of $f(x)$. All these numbers divide the number line into open intervals.

Step II. Choose a test number c from each interval $a<x<b$ determined in Step I., and evaluate $f^{\prime \prime}(c)$. Then,

If $f^{\prime \prime}(c)>0$, the graph of $f(x)$ is concave upward on $a<x<b$.

If $f^{\prime \prime}(c)<0$, the graph of $f(x)$ is concave downward on $a<x<b$.

Procedure for Finding the Inflection Points of a Function f

Step I. Compute $f^{\prime \prime}(x)$ and determine all points in the domain of f where either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist.

Step II. For each number c found in Step I., determine the sign of $f^{\prime \prime}(x)$ to the left and to the right of $x=c$, that is, for $x<c$, and for $x>c$.

If $f^{\prime \prime}(x)>0$ on one side of $x=c$ and $f^{\prime \prime}(x)<0$ on the other side, then $(c, f(c))$ is an inflection point of f.

Step 7. Sketch by putting together all the information gathered from Steps 1-6. Be sure to remember that the graph cannot cross a vertical asymptote, but it can cross its horizontal asymptote, just not at negative infinity and positive infinity.

Example. Sketch the curve $y=\frac{1}{x^{3}-x}$.
Solution. 1. For $y=\frac{1}{x^{3}-x}=\frac{1}{x\left(x^{2}-1\right)}$, the domain consists of all x values except $x=-1, x=0$, and $x=1$.
2. There are no x-intercepts and y-intercepts.
3. $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{3}-x}=\lim _{x \rightarrow \pm \infty} \frac{1 / x^{3}}{1-1 / x^{2}}=0$

Thus, the line $y=0$ is a horizontal asymptote.
Since the denominator equals 0 when $x=-1, x=0$, and $x=1$, and

$$
\begin{array}{ll}
\lim _{x \rightarrow-1^{+}} \frac{1}{x^{3}-x}=+\infty & \lim _{x \rightarrow-1^{-}} \frac{1}{x^{3}-x}=-\infty \\
\lim _{x \rightarrow 0^{+}} \frac{1}{x^{3}-x}=-\infty & \lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}-x}=+\infty \\
\lim _{x \rightarrow 1^{+}} \frac{1}{x^{3}-x}=+\infty & \lim _{x \rightarrow 1^{-}} \frac{1}{x^{3}-x}=-\infty
\end{array}
$$

The lines $x=-1, x=0$, and $x=1$ are vertical asymptotes.
4. $y^{\prime}=\frac{-3 x^{2}+1}{\left(x^{3}-x\right)^{2}}$. Set $y^{\prime}=0$. The solutions (i.e., the critical numbers) are $x= \pm \frac{1}{\sqrt{3}}$.

Note that y^{\prime} is not defined at $x=-1, x=0$, and $x=1$, but these are not critical numbers as they are not in the domain of $f(x)$. However, these x values must be included in the analysis of intervals where the function is increasing and decreasing.

Note that $x=1 / \sqrt{3} \approx 0.58$ and $x=-1 / \sqrt{3} \approx-0.58$.

The curve is increasing (inc) on $\left(\frac{-1}{\sqrt{3}}, 0\right)$ and $\left(0, \frac{1}{\sqrt{3}}\right)$. The curve is decreasing (dec) on $(-\infty,-1),\left(-1, \frac{-1}{\sqrt{3}}\right)$, $\left(\frac{1}{\sqrt{3}}, 1\right)$, and $(1, \infty)$.
5. The critical numbers are $x= \pm \frac{1}{\sqrt{3}}$.

The point $\left(\frac{1}{\sqrt{3}},-\frac{3 \sqrt{3}}{2}\right)$ is a relative maximum.
The point $\left(-\frac{1}{\sqrt{3}}, \frac{3 \sqrt{3}}{2}\right)$ is a relative minimum.
6. $y^{\prime \prime}=\frac{2\left[6 x^{4}+9 x^{2}+1\right]}{\left(x^{3}-x\right)^{3}}$

Set $y^{\prime \prime}=0$. There are no solutions (thus, there are no inflection points). However, for the purpose of analyzing concavity, the numbers $x=-1, x=0$, and $x=1$ are considered which are not in the domain of $f(x)$.

The curve is concave up (CU) on $(-1,0)$ and $(1, \infty)$ and is concave down (CD) on $(-\infty,-1)$ and $(0,1)$.
7. Sketch of $f(x)$.

