Area between Curves

Area between Curves

The area of the region between the curves $y=f(x)$ and $y=g(x)$ and between $x=a$ and $x=b$ is $A=\int_{a}^{b}|f(x)-g(x)| d x$.

Keep in mind that the term "region between the curves" refers to a bounded region (i.e., to a region that does not extend to infinity).

Instead of the absolute value, if the graphs of the two functions bounding the region do not intersect within (a, b), then

$$
A=\int_{x=a}^{x=b} y(x)_{\text {upper }}-y(x)_{\text {lower }} d x
$$

Example. Find the area of the region bounded by the curves $y=e^{x}, y=5^{x}$, and $x=1$.

Solution. Sketch the curves and identify the region. Note that the curves intersect at $x=0$.

On $[0,1]$, the upper curve is $y=5^{x}$, and the lower curve is $y=e^{x}$.

The area of the region is.

$$
\begin{aligned}
A & =\int_{0}^{1}\left(5^{x}-e^{x}\right) d x=\left.\left(\frac{5^{x}}{\ln 5}-e^{x}\right)\right|_{0} ^{1} \\
& =\left(\frac{5^{1}}{\ln 5}-e^{1}\right)-\left(\frac{5^{0}}{\ln 5}-e^{0}\right)=\frac{5}{\ln 5}-e-\frac{1}{\ln 5}+1 \\
& =\frac{4}{\ln 5}-e+1
\end{aligned}
$$

If the region involved looks simpler when the bounding curves are viewed as functions of y, then the analogous formula is used to integrate with respect to y :

$$
A=\int_{y=a}^{y=b} x(y)_{\text {right }}-x(y)_{\text {left }} d y
$$

Example. Find the area of the region enclosed by the curves $y=x^{3}$ and $y=x^{2}$.

Solution. Sketch the area of the region.

To find the points where the curves intersect, combine the two equations:

$$
\begin{aligned}
x^{3} & =x^{2} \\
x^{3}-x^{2} & =0 \\
x^{2}(x-1) & =0
\end{aligned}
$$

Thus, $x=0$ and $x=1$. The corresponding points are $(0,0)$ and (1,1).

The right curve is $y=x^{3}$, or $x=y^{1 / 3}$, and the right curve is $y=x^{2}$, or $x=\sqrt{y}$.

The area of the region is

$$
\begin{aligned}
A & =\int_{0}^{1}\left(y^{1 / 3}-y^{1 / 2}\right) d y=\left.\left(\frac{3}{4} y^{4 / 3}-\frac{2}{3} y^{3 / 2}\right)\right|_{0} ^{1} \\
& =\left(\frac{3}{4}(1)^{4 / 3}-\frac{2}{3}(1)^{3 / 2}\right)-\left(\frac{3}{4}(0)^{4 / 3}-\frac{2}{3}(0)^{3 / 2}\right)=\frac{1}{12}
\end{aligned}
$$

