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1. (10 points) A function f : B → C is said to be a monomorphism if whenever g1, g2 : A→ B are a pair
of functions such that f ◦ g1 = f ◦ g2, then g1 = g2. Show that f is a monomorphism if and only if f is
injective.

Solution: Suppose that f is a monomorphism, and that b1, b2 ∈ B satisfy f(b1) = f(b2). Let
g1 : B → B be the constant function g1(x) = b1 for all x ∈ B, and similarly g2 : B → B is such that
g2(x) = b2. Now f(g1(x)) = f(b1) = f(b2) = f(g2(x)) for all x ∈ B, so by assumption g1(x) = g2(x)
for all x ∈ B, which in turn shows that b1 = b2.

Conversely, suppose that f is injective. By a result from class we know that f is left invertible, so
choose one such inverse h : C → B such that h ◦ f = idB . Let g1, g2 : A → B be any to functions
such that f ◦ g1 = f ◦ g2, and post-compose by h to get

h ◦ (f ◦ g1) = (h ◦ f) ◦ g1 = idB ◦ g1 = g1

= h ◦ (f ◦ g2) by assumption

= (h ◦ f) ◦ g2 = idB ◦ g2 = g2.

This shows that g1 = g2, allowing us to conclude that f is a monomorphism as required.
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2. (10 points) A set S ⊆ R is said to be open if for every s ∈ S, there exists a positive real number r such
that the set B(s, r) = {y ∈ R : |s− y| < r} is contained within S; namely, B(s, r) ⊆ S. Show that the
set S = (0, 1) is open.

Solution: Fix some x ∈ (0, 1). The radius we need to use is the smaller of the distances from either
0 or 1, so let r = min {x, 1− x}, both of which are positive by the assumption that 0 < x < 1. We
claim that B(x, r) ⊆ S. Indeed, let y ∈ B(x, r) so that |y − x| < r by assumption. Thus

|y| = |y − x+ x| ≤ |y − x|+ |x| ≤ r + x < (1− x) + x = 1.

Hence y ∈ (−1, 1). Moreover, we can write |y − x| < r as x − r < y < x + r. Focusing on the first
half of the inequality and using the fact that r ≤ x implies that x− r ≥ 0, so 0 ≤ x− r < y shows
that y > 0. Both the inequalities combined shows that y ∈ (0, 1).

Page 3



3. (10 points) Let D =
{
x ∈ Q : x =

m

2n
,m ∈ Z, n ∈ N

}
. Show that D is dense in R; namely, that every

open interval (a, b) contains at least one element of D. Hint: Choose n sufficiently large so that 1/2n <
b− a, and argue that some point of the form m/2n (m ∈ Z) must live in (a, b).

Solution: Fix an open interval (a, b) for some a, b ∈ R with a < b. Per the suggestion, choose n ∈ N
sufficiently large so that 2−n < b − a. Define the set B = {m/2n : m ∈ Z}, of which we claim that
one of the elements in B is also in (a, b). For the sake of contradiction, assume there is no such value
in B which satisfies this definition. Let M be the largest such integer satisfying M/2n < a, so that
(M + 1)/2n > b. But then

b− a < M + 1

2n
− M

2n
=

1

2n
< b− a

a contradiction, thus some element of B must live in (a, b).
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4. (10 points) Suppose f : (−1, 1)→ R. Using the ε-δ definition of the limit, show that

lim
x→0

f(x) = 0 if and only if lim
x→0
|f(x)| = 0.

Note: This can be done directly. If you wish to employ a theorem from class to do this, you must first
prove that theorem.

Solution: The crux of this entire result hinges upon the fact that ||x|| = |x|. Indeed, we know that
|x| ≥ 0 for all x, and that |x| = x if x ≥ 0, so ||x|| = |x|. We’ll use this result freely in the following
arguments.

Suppose that lim
x→0

f(x) = 0, for which we want to show that the absolute value similarly goes to 0. Let

ε > 0 be given, and choose a δ > 0 such that |f(x)− 0| = |f(x)| < ε whenever 0 < |x− 0| = |x| < δ.
We claim this same δ works for the absolute value of f . Indeed, if 0 < |x| < δ, then

||f(x)| − 0| = ||f(x)|| = |f(x)| < ε.

The converse direction is almost identical. Suppose |f(x)| x→0−−−→ 0. Let ε > 0 be given and choose
δ > 0 such that ||f(x)| − 0| = |f(x)| < ε. Clearly setting δ = ε will ensure the desired inequality.

Page 5



5. (10 points) Suppose f, g : R→ R satisfy

lim
x→c

f(x) = L and lim
x→c

g(x) = M

for some c, L,M ∈ R. Using the ε-δ definition of the limit, show that

lim
x→c

[2f(x)− 3g(x)] = 2L− 3M.

Note: This can be done directly. If you wish to employ a theorem from class to do this, you must first
prove that theorem.

Solution: Let ε > 0 be given, and fix δf , δg > 0 such that

0 < |x− c| < δf ⇒ |f(x)− L| < ε

4

0 < |x− c| < δg ⇒ |g(x)−M | < ε

6
.

Let δ = min {δf , δg} and suppose that 0 < |x− c| < δ, so that both inequalities above will be true.
Thus

|[2f(x)− 3g(x)]− [2L− 3M ]| = |2(f(x)− L)− 3(g(x)−M)| ≤ 2|f(x)− L|+ 3|g(x)−M |

< 2
ε

4
+ 3

ε

6
= ε,

as required.
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6. (i) (3 points) Suppose f : R → R. Without using the word “not”, or any synonym of “not”, find the
mathematical statement for lim

x→c
f(x) 6= L.

Solution: The definition of the limit is ∀ε > 0,∃δ > 0,∀x, 0 < |x − c| < δ ⇒ |f(x) − L| < ε.
Negating gives

∃ε > 0,∀δ > 0,∃x, 0 < |x− c| < δ and |f(x)− L| ≥ ε.

(ii) (7 points) Show that lim
x→0

x

|x|
6= 1.

Solution: Let ε = 1, let δ > 0 be arbitrarily given, and choose x = −δ/2. Note that∣∣∣∣ x|x| − 1

∣∣∣∣ =

∣∣∣∣ −δ/2| − δ/2|
− 1

∣∣∣∣ = |−1− 1| = 2 > ε

showing that the limit cannot be 1, as required.
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