The Robert Gillespie **FNTRF**

Differentiation Techniques

Assume that c and n are real numbers and f(x), g(x), and u(x) are any differentiable functions of x:

$$1. \qquad \frac{d}{dx}(c) = 0$$

2.
$$\frac{d}{dx}(x^n) = nx^{n-1} \text{ (power rule)}$$

3.
$$\frac{d}{dx}(cf) = c\frac{df}{dx}$$

4.
$$\frac{d}{dx}(f \pm g) = \frac{df}{dx} \pm \frac{dg}{dx}$$

5.
$$\frac{d}{dx}(fg) = g\frac{df}{dx} + f\frac{dg}{dx}$$
 or $(fg)' = gf' + fg'$ (product rule)

6.
$$\frac{d(f/g)}{dx} = \frac{g\frac{df}{dx} - f\frac{dg}{dx}}{g^2} \text{ or } \left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2} \text{ (quotient rule)}$$

7.
$$\frac{d[u(x)]^n}{dx} = n[u(x)]^{n-1} \frac{d(u(x))}{dx}$$
 (general power rule – chain rule)

$$8. \qquad \frac{d(e^x)}{dx} = e^x$$

9.
$$\frac{d(\ln x)}{dx} = \frac{1}{x}$$

10.
$$\frac{d(e^{u(x)})}{dx} = e^{u(x)} \frac{d(u(x))}{dx}$$

10.
$$\frac{d(e^{u(x)})}{dx} = e^{u(x)} \frac{d(u(x))}{dx}$$
 11. $\frac{d[\ln(u(x))]}{dx} = \frac{1}{u(x)} \frac{d(u(x))}{dx}$

12.
$$\frac{d(a^x)}{dx} = a^x \ln a$$

$$13. \quad \frac{d(\log_a x)}{dx} = \frac{1}{x \ln a}$$

14.
$$\frac{d(a^{u(x)})}{dx} = a^{u(x)} \ln a \frac{d(u(x))}{dx}$$

15.
$$\frac{d(\log_a u(x))}{dx} = \frac{1}{u(x)\ln a} \frac{d(u(x))}{dx}$$