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Comparison Test
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Suppose Z an and Z bn are series with positive terms.
n=1 n=1

0) If Z bn converges and d, < bn for every integer N > 1, then Zan
n=1 n=1
converges.

i) If Z bn diverges and @, = bn for every integer N > 1, then Zan diverges.
n=1 n=1

Example. Determine whether each series converges or diverges.
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Solution. (@) To find bn, focus on the denominator of an to construct an

inequality that is true for all N >1.
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Take b = ? The series Z b Z— which is a geometric
n= 1

serieswith = — < 1, and thus, converges.
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By the Comparison Test Part (i), the series Z
—2+95

n converges as

well.
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(b)

To find bn, focus on both the numerator and denominator of an to

construct an inequality that is true for all N = 1.
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Take bn = W The series Z bn = ZW which is a p-series with
n=1 n=1

1
p = E < l, and thus, diverges.
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By the Comparison Test Part (ii), the series 3— diverges.
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Limit Comparison Test
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If Z d, and Z bn are series with positive terms and lim—=2=c>0,

n=1

N—o0
n=1

where C is a real number, then either both series converge or both diverge.

Note that the Limit Comparison Test is, in many cases, more convenient to use than the
Comparison Test, as it does not require to create an inequality.

Example.

Solution.
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Determine whether each series converges or diverges.
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Let @ —1 b —1
etd, = and 0, =
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Then,
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In this case, C = Z >0, since Z bn = 2—2 is a p-series with

n=1 n=1 n
= 1
p= 2>1,it converges, and therefore, the series ZZ—
— 4n° +1
converges by the Limit Comparison Test.
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In this case, C = 1>0. since Z bn = ZW is a p-series with
n=1

n=1
2 = 1
p =—< l, it diverges, and therefore, the series ZZ—
3 o 4n+1

diverges by the Limit Comparison Test.



