Managing Fugitive Methane Emissions in Inactive Oil and Gas Wells: **Policy Diffusion Opportunities in Canada's Petrol Provinces**

Caelin Palmer

Recent policy developments have been directed toward reducing methane emissions in active oil and gas infrastructure across Canada. However, regulations in the largest petrol-producing provinces—British Columbia, Alberta, and Saskatchewan—often exempt inactive facilities. Past studies have shown that fugitive emissions from inactive wells are largely underestimated and under-regulated; policy diffusion is a mechanism by which policymakers can close these gaps.

Research Question: To what extent do regulations in BC, Alberta, and Saskatchewan address fugitive methane emissions in inactive oil and gas wells? Sub Question: Which method(s) of policy diffusion could help close identified gaps?

Background

- Methane makes up 13% of Canada's GHG emissions, 40% of which comes from the oil and gas sector¹
- The national GHG inventory underestimated annual methane emissions from abandoned wells by 150%²
- Federal regulations targeting methane release in the upstream oil and gas sector apply only to facilities producing or receiving more than 60,000 m³ of oil or gas annually

- Emission factors from past studies have broadly ranged from 0.002 g/h to 29.17 g/h for inactive wells^{2,3}
- There are approximately 130,000 inactive, suspended, and orphan wells currently listed in provincial reports
- Based on these findings, annual emissions in Western Canada could amount to up to 846,057 t CO_2e

Supervisor: Dr. Laurel Besco

Methods

The policy analysis compared current regulations in each province to best practices using two metrics:

Decommissioning Timelines (Fig. 1)

- Period a well can remain idle • Period a well can remain suspended
- Mechanisms in place to identify priority wells

Leak Detection and Repair (LDAR)

- Required monitoring frequency • Repair Requirements/Thresholds • New technology allowances in LDAR.

To identify policy adoption routes to close regulatory gaps, four mechanisms of diffusion were considered: competition, learning, construction, and coercion⁴.

Findings & Conclusion

- Alberta and Saskatchewan can—through policy learning—look to BC and neighbouring states for more stringent decommissioning timeline regulations.
- Policy construction is a common method of diffusion evidenced by cross-jurisdictional groups such as the Interstate Oil and Gas Compact Commission⁵.
- LDAR requirements can be imposed coercively through CEPA. Canada's proposed new regulatory framework will expand current requirements to non-producing assets⁶; the provinces will likely enter equivalency agreements.
- Further studies are required to quantify emissions from unreported assets and assess current compliance within the industry.

SSM1100

Analysis

Decommissioning Timelines

Regulations for decommissioning timelines increase in stringency from East to West: Saskatchewan and Alberta allow indefinite suspension for inactive wells; BC is aligned with best practices

Leak Detection and Repair

LDAR best practices include three screenings per year. BC and Alberta require pressure tests every 1-5 years for suspended wells; Saskatchewan has no inactive monitoring requirements.

References

- sources and sinks in Canada. Canada's Greenhouse Gas Inventory,
- Canada and the United States. Environmental Science & Technology, 55(1), 563-570. 10.1021/acs.est.0c04265
- Carbon Management, 9(2), 165-175. 10.1080/17583004.2018.1443642
- coercion, competition, or learning? Annu.Rev.Sociol., 33, 449-472.
- and Gas Compact Commission.
- to achieve 2030 target.

Best Practices Needs Improvement/In Progress Severely Lacking/Absent

nporary gging	Permanent Abandonment	Priority Assignment

1. Environment and Climate Change Canada. (2022). National inventory report 1990–2020: Greenhouse gas 2. Williams, J. P., Regehr, A., & Kang, M. (2021). Methane Emissions from Abandoned Oil and Gas Wells in

Pekney, N. J., Diehl, J. R., Ruehl, D., Sams, J., Veloski, G., Patel, A., Schmidt, C., & Card, T. (2018). Measurement of methane emissions from abandoned oil and gas wells in Hillman State Park, Pennsylvania. 4. Dobbin, F., Simmons, B., & Garrett, G. (2007). The global diffusion of public policies: Social construction,

5. IOGCC. (2021). Idle and Orphan Oil and Gas Wells: State and Provincial Regulatory Strategies. Interstate Oil

Government of Canada. (2022). Proposed regulatory framework for reducing oil and gas methane emissions